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ABSTRACT

The solution to the steady state magnetohydrodynamic equations

governing the supersonic expansion of the solar corona 
into interplane-

tary space is obtained for various assumptions regarding 
the form in

which proton'thermal energy is carried away from the sun.

The one-fluid, inviscid, formulation of the MHD equations is

considered first assuming that thermal energy is carried away by con-

.duction from a heat source located at the base of the corona. The

inclusion in the analysis of the angular motion of the solar wind, leads

to the existence of three critical points through which the numerical

solutions must pass to extend from the sun's surface to large heliocentric

distances. The results show that the amount of magnetic field energy

converted into kinetic energy in the solar wind is only a small fraction

of the total expansion energy flux and has little effect upon the final

radial expansion velocity.

The azimuthal velocity predicted by this model at 1 A.U. is

91.19 Km/sec., which is smaller that that indicated by experimental

observations but in agreement with previous theoretical work in this

field.

The two-fluid formulation of the MHD equations is obtained next

under the assumption that the protons become collisionless and thermally

anisotropic beyond a given radius. This formulation is then applied to

a two-region model of the solar wind in which the flow in the inner

region is described by the one-fluid equations and in the outer region
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by the two-fluid formulation. It is shown that the effect of the proton

thermal anisotropy upon the angular motion of the solar wind is small and

cannot increase the predicted azimuthal velocities at 1 A.U. to values in

better agreement with observations. Since a modified CGL theory is used

in the two-fluid formulation of the magnetohydrodynamic equations, the

model provides, in addition, microscopic information about the protons in

the form of velocity distribution function plots at various selected

heliocentric distances.

The macroscopic properties predicted by the models are in good

agreement with experimental quiet-time observations at 1 A.U. The proton

velocity distribution function obtained at this radius resembles closely

that inferred from in-situ proton measurements. The models may be used

with increased confidence to predict flow conditions at other heliocentric

radii presently under experimental investigation or to be explored in

the near future.
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I. INTRODUCTION

I.1 The Solar Wind

The existence of a continuous high-speed outflow of corspuscular

radiation from the sun, known today as the "solar wind", is a well

established fact, first suggested by Biermann (1951) to explain the

observed acceleration of comet tails pointing away from the sun, and

later predicted by Parker (1958) as a continuous supersonic expansion

of the solar corona.

In his pioneering paper Parker demonstrated that the corona cannot

exist in a state of hydrostatic equilibrium. Its large extent and elevated

temperature, (of the order of a few million degrees), create a pressure

force distribution that cannot be balanced by the containing effects of

the sun's gravitational attraction and interstellar pressure and thus

expands supersonically into space. This expansion process is analogous

to the flow of gas through a deLaval nozzle, as pointed out by Clauser

(1960).

The existence of the solar wind was verified by the first Mariner 2

gresults (Neugebauer and Snyder, 1962; Snyder et al., 1963), resolving a

long standing controversy between the evaporative processes proposed by

Chamberlain (1960) or "solar breeze", and the hydrodynamic supersonic

expansion of Parker. The history of the ideas and experimental observations

that led to the solar wind concept as presently known, has been reviewed

by Dessler (1967) and Spreiter and Rizzi (1972).

Today, after a decade of racecraft observations, the large scale

features of the solar wir.d ctch r: itc :ver.e flow speed, density,
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composition, electron and proton temperatures and thermal anisotropy

ratios, are relatively well known. On a smaller scale, it has been

observed that the coronal expansion is a dynamic process giving rise to

a multitude of magnetohydrodynamic phenomena such as shock waves, density

and magnetic field discontinuities, and high-speed stream interactions.

In spite of this dynamic character, a "quiet-state" of the solar wind

has been associated with low-speed conditions observed at certain times

to prevail for periods long compared to the expansion time (Hundhausen,

1972). The observed properties of this "quiet-state" solar wind have

been summarized in Table I for future reference.

Reviews of the observational knowledge of the solar wind have been

given by Ness (1967), Axford (1968) and Hundhausen (1968, 1970), while

recent measurements concerning transport phenomena, pressure anisotropies

and other related features, have been reported by Montgomery (1971) and

Ogilvie et al. (1968).

The expanding coronal gas is an electrically neutral, highly con-

ductive plasma and as such it is expected to carry with it the relatively

tweak solar magnetic field. This frozen-in flux combined with solar

rotation results in the Archimedean spiral structure of the interplanetary

magnetic field first suggested by Parker and later confirmed by in-situ

observations by spacecraft in the Venus-Earth-Mars space. Ness and

Wil ox (1967) reported a particular large scale feature of the inter-

planetary field; this is its sector structure associated with polarity

reversals observed during the course of a solar rotation and persisting

over periods of several solar rotations.



TABLE I

AVERAGE PROPERTIES OF THE LOW-SPEED

(QUIET-STATE) SOLAR WIND AT 1 A.U.

Radial Component of Flow Velocity 300-325 Km/sec.

Nonradial Component of Flow Velocity 8 Km/sec.
-3

Proton (electron) Density 8.7 cm3

Electron Temperature 1.5 x1050K

Proton Temperature 4 xl040K

Magnetic Field Intensity 5 gamma

Solar Ecliptic Longitude of Field 1400

Proton Thermal Anisotropy 2

-2 -1
Total Energy Flux Density 0.25 ergs cm sec

Electron Heat Conduction Flux Density 7 x 10-3  -2 -1
Electron Heat Conduction Flux Density 7 x 10 ergs cm sec



The spiral configuration of the field results in the transport of

angular momentum away from the sun thus exerting a retarding torque on

its outer layers. In addition, a smaller amount of angular momentum is

transported by the solar wind in the form of an azimuthal velocity

component in interplanetary space.

At large distances.from the sun, the momentum flux and magnetic

pressure associated with the solar wind become comparable to the total

interstellar pressure. In this region it is expected that the solar wind

will undergo a supersonic to subsonic transition generating a shock wave,

.(Axford et al. 1963; Dessler, 1967).

1.2 Theoretical Models of the Solar Wind

Since the early work of Parker, (1958, 1960) numerous fluid and

exospheric models of the coronal expansion have been proposed. Hundhausen

(1968, 1970; 1972) has reviewed the general characteristics and conditions

of applicability for these models, and the accuracy with which they

predict observed flow conditions at the earth's orbit.

The assumption.made in most models that the solar wind behaves

collectively as a ionized fluid cannot be substantiated in terms of

iclassical plasma theory. The exospheric models of Chamberlain predicted

very small expansion velocities but later refinements on these models by

Brandt and Casinelli (1966), Jockers (1970), and Hollweg (1970), produced

expansion speeds comparable to those obtained from fluid models.

Nevertheless, other values are in considerable disagreement with observations,

in particular the proton thermal anisotropy ratio and expected behavior

of 4He+ ions in the solar wind.
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All of the observational evidence indicates a fluid-like behavior

in the coronal expansion and therefore fluid models are expected to

give results in better general agreement with observations 
than exospheric

(or evaporative) models.

The general nature of the results obtained from hydrodynamic 
models

is the same, that is, supersonic expansion of the coronal gas in inter-

planetary space. The significant differences among the models result

from the particular treatment of the energy equation and the inclusion 
of

the spiral magnetic field in the analysis. Of particular importance to

the subject of this dissertation are the models of Weber and Davis (1967),

Urch (1969), Whang (1971a), Wolff et al. (1971) and Whang (1972).

Weber and Davis developed a one-fluid model with a polytropic

radial temperature dependence and included the effects of the frozen-in

solar magnetic field. The radial expansion velocity is not affected to

any large extent by the inclusion of the field but a significant retarding

torque on the sun is predicted as a result of the stress produced by 
the.

spiral structure of the magnetic field.

Urch obtained a numerical solution to the magnetohydrodynamic

tone-fluid equations under the assumptions that heat is carried away by

conduction from a heat source located at the base of the corona and that

the magnetic field inhibits the transport of thermal energy at right

angles to the field. The temperatuxe8 predicted by this model at 1 A.U.

are too high, although other quantities are in agreement with observations.

The azimuthal velocity at the earth's orbit predicted by these models 
lies

in the range of 1-2 K/sec. in disagreement with reported observations

of 6-10 Km/sec.
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Whang considered a radial model of the coronal expansion including

the spiral magnetic field and showed that under these assumptions, mag-

netic field expansion energy is continuously converted into kinetic

energy and thus was able to increase the predicted radial velocity at

1 A.U. by 17%. Modisette (1972) has pointed out that although the magnetic

energy conversion process described by Whang is indeed operative in the

solar wind, its effect should not be as large when the azimuthal velocity

component is taken into consideration in the analysis. We shall consider

this problem in detail in the first part of this dissertation by in-

corporating the azimuthal velocity into Whang's one-fluid model and

obtain numerical solutions to the resulting system of magnetohydrodynamic

equations.

Wolff et al. have proposed that viscosity plays a major role in

heating up the protons in the solar wind and in this fashion account for

a non-thermal source required by two-fluid models to obtain reasonable

proton temperatures at 1 A.U., (Hundhausen, 1970). Although their results

agree quite well with observations after an empirical function for the

conductivity coefficient is assumed, the role of viscosity and other

transport phenomena defined in terms of classical plasma theory is not

completely understood at the present time. The observational evidence

points out to the existence of randomizing effects other than Coulomb

collisions in solar wind but the exact nature of these interactions is

not known.

A theoretical approximation tt the observed proton velocity distri-

bution function was obtained by Whang (1971b) and it allows the set of
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magnetohydrodynamic equations of Chew, Goldberger 
and Low (1956) to be

closed relating the proton temperature to the proton heat flux in the

context of guiding center plasma theory rather than classical 
heat

conduction. These results were included in a two-fluid, two-region

anisotropic model (Whang, 1972), capable of providing macroscopic 
as

well as microscopic information about the solar wind.

Weber (1967) and Weber and Davis (1970) have considered the effects

of thermal anisotropies upon the angular motion of the solar 
wind under

certain simplifying assumptions and show that the predicted 
azimuthal

velocity at 1 A.U. is five times larger than that predicted by isotropic,

one-fluid models. The second part of this dissertation will consider the

solution to the magnetohydrodynamic equations for a two-fluid, two-region

solar wind model which includes Whang's formulation of the proton velocity

distribution function to represent proton thermal anisotropy effects

upon the angular motion. The two-region formulation of the model is

necessary to avoid the rapid proton cooling problem which has plagued

most two-fluid models and represents only an approximation to the physical

processes believed to be responsible for the observed 
properties of the

solar wind.
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II. A ONE-FLUID MAGNETOHYDRODYNAMIC

MODEL OF THE SOLAR WIND

II.1 Basic Assumptions

In this section we shall obtain numerical solutions 
to the steady

state magnetohydrodynamic equations governing 
the expansion of the

coronal gas under the assumptions that the solar wind is 
a perfectly

conducting fluid, heat is carried away by conduction 
from the base of

the corona and that the solar magnetic field depends only 
on latitude,

ignoring its sector structure.

The assumption that the solar wind behaves as a fluid is based

upon observed characteristics of the coronal 
expansion. We shall consider

this fluid to be inviscid since energy supplied by 
thermal conduction is

much larger than that dissipated by viscosity (Parker, 
1965) and the

general form of the viscous stress tensor 
for low density plasmas in the

presence of a magnetic field is not well 
known. Viscous models based

upon the classical formulation for this tensor 
have shown greater dis-

agreement with observations than inviscid models 
(Whang, Chang and Liu,

1966; Scarf and Noble, 1964). The gas will be assumed to be composed of

fully ionized hydrogen with a 5% helium number 
density content.

In developing the model we shall closely follow the approach 
of

Whang (1971a), except for the inclusion of the 
azimuthal component of

the momentum equation in our analysis. The model will thus represent

the flow of ionized gas in the sun's equatorial plane and it is further

assumed that this flow is axially symmetric ebout the sun's 
rotation

axis.
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11.2 MHD Governing Equations for the Model

The steady state MHD equations of mass, momentum and energy

conservation, assuming that charge neutrality is maintained in the plasma,

may be expressed as

) . o (11.2.1)

Amn V),u. ) O (11.2.3)

where P is the pressure tensor, N the Poynting vector and X an external

force function. Other quantities such as the heat flux vector q,

magnetic field B, mass density p = mn, temperature T, are represented

in standard MHD notation and gaussian units will be used throughout 
the

development.

Maxwell's equations govern the steady state interplanetary magnetic

field and may be written as

Vxj :- (11.2.4)

. o (11.2.5)

-: ° (11.2.6)
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V. E5 = (11.2.7)

For a perfect conductor in an inertial frame of reference the

electric field is given by

U -- - (11.2.8)

and the Poynting vector takes the form

. X - Ex (11.2.9)

From (11.2.4), (11.2.6) and (11.2.8) we obtain

Vx ( r '. B) = C (11.2.10)

-and

_B = _ CvxB )" _ (11.2.11)
I 4Ir

We consider now the spherical coordinate system (r,*,w) centered

at the sun and aligned with the ecliptic plane, shown in Figure la. In

this system we express the magnetic field B and velocity vector u as

U = eer (r, ) + w U,(r,y) (11.2.12)

B = _rBc (rjp) + e, 1 (r,) (11.2.13)

The mass conservation equation (11.2.1) becomes then

(n~r2) = o
ar

or

fIag C :: cIe"IC.. (11.2.14)

Since the model is assumed isotropic and one-fluid, the pressure tensor

is given by

where n is the particle density, k BolL-&.. .n's crnstan' rn! I the ulit



Figure 1

a) The spherical coordinate system.

b) Definition of the magnetic field angle 0.



-- /

ir X2

ECLIPTIC
PLANE

(a)

WI

ew I

er -

(b)



13

tensor. It follows that

v.p n knk 'T) (11.2.16)

Introducing (11.2.12) and (11.2.13) in 
(11.2.10) we obtain

- - [ ( ar 5w 15,)~' (11.2.17)

r Zr

which implies

r , -% 5Br 0= o * * cI (11.2.18)

An analogous procedure with (11.2.5) yields

(arBr) 0 (11.2.19)

or

r2 Br e Const. . (11.2.20)

The radial and azimuthal components of 
the magnetic force may be obtained

from (11.2.11) and are given by

4= X5 31 r Bw) (11.2.21)

C r er

and

41Br a (r8,) (11.2.22)
C W r Or

where sin * has been taken as unity for the 
equatorial plane model under

consideration.

The external force function X in the case of 
the solar wind is

given by the sun's gravitational 
attraction

X -- er - (11.2.23)
-- - r .

where G is the universal gravitational constant 
and NM the mass of the

sun. The radial and azimuthal components of the 
momentum equation thus

take the forms
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n n !t-ar EL.V('an n B& rD,)S r 4yrr ar

(11.2.24)
r-

and

M, n rr r w) (11.2.25)
r 5r 4Trr ?r

Here m is the mean mass per particle and n the particle density per cm.

In the case of the energy equation, proceeding in an analogous fashion,

we obtain

L Br.)] (11.2.26)

'.qi r r) (11.2.27)

In order to obtain an adequate expression for the heat flux term

v.q in (11.2.3), we must take into account the inhibiting effect of the

magnetic field upon the transport of thermal energy perpendicular to the

field lines. Following the approach of Urch (1969), Wolff et al. (1971),

Whang (1971a), Gentry and Hundhausen (1969), we express the radial

rcomponent of the heat flux term as

*s 1 a aa (11.2.28)

where 0 is the angle between the radial direction and the magnetic field

as shown in Figure lb, and K is the thermal conductivity coefficient.

Thc energy conservation equation (11.2.3) is thus given by

.r' "7L r s +

r V I~



15

m %L r = 0(11.2.29)

This equation may be integrated once with the 
result

nvr r"( kT BW - & 1-:2U 0U.\ BC.
4n r 4W

.rL a< dAT (11.2.30)

where F is the total energy flux per steradian. 
The second term on the

left-hand side of (11.2.30), not included in Whang's 
analysis, represents

the energy flux associated with the rotational motion of the gas.

The azimuthal component of the momentum equation (11.2.25) 
may be

integrated directly (Weber and Davis, 1967) to give

rt/ - wr/41mnLr 41FU~'n (11.2.31)

Equations (11.2.18) and (11.2.31) may now be used 
to calculate

I 4 TmA Ac ' 4BrC (11.2.32)

r 4Tmn ar - Dr2

1 m 4nl , r C"Br C) (11.2.33)
r 4ATmlm tty - )rs

The remaining terms in (11.2.24) are obtained from the above relations

and the equation takes the form

Ic ~r~k _Co 2kqdT-r 2U w Br

M rr CI-A 2 )j (11.2.34)
-2 kT O Z

Ila.e 7 l (11.2.3 5 )

and A is defined as the reciprocal of the radial Alfven Mach number, MA'

It is interesting to compare (11.2.34) with the corresponding

equation obtained by Whang; this will be carried out in Section 11.3.
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It is convenient to introduce

+on B 5w/Br (11.2.36)

in equation (11.2.34). Hence

4IcT Gfo 2kdr '-". - ur1a4
rdur ' I n =r r dr (At-A1)j (11.2.37)

The governing equations (11.2.30) and (11.2.37) may be cast in

dimensionless form by considering the flow conditions at a particular

radius. Let us denote the conditions at r = r3 by the subscript indicated.

,The reason for choosing 3 as the subscript will become apparent as we pro-

ceed with the development.

We introduce the following dimensionless variables

V; W A /44 * / i;e T/r. ; (11.2.38)

and dimensi6nless parameters 7, ( and 8, defined by

'= CM/ r, -/2- k =. 'U JS,/U (11.2.39)

Equation (11.2.37) may now be written in dimensionless form as follows

V"IV I - IF 2 (IA./ , (11.2.40)

where the parameter

1. 3 r/4 I"n+ (11.2.41)

is defined as the reciprocal of the radial Alfven Mach number at the

re.erence radius.
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The denominator of (11.2.40)

_~-- +cn4/ 1( -,/ (11.2.42)

will vanish for three sets of values 
of the independent and dependent

variables, denoted respectively as (Z 1 ,V 1 ,e1 ), (Z2',V2 2 ) and (Z3,V3, 3 ).

These three sets correspond to the critical 
points of (11.2.40), first

studied by Weber and Davis (1967); each critical point occurs when 
the

fluid velocity equals the characteristic 
propagation speed of a possible

wave mode in the medium.

The first critical point, closest to the sun (r=rl), corresponds

approximately to Parker's critical point 
where the fluid velocity equals

the local characteristic thermal speed 
of the plasma, in our case modified

by the presence of the magnetic field. 
The second critical point

represents the singularity introduced 
in (11.2.40) by the azimuthal com-

ponent of the momentum equation. 
At this point the radial component 

of

the fluid velocity equals the local Alfven speed 
as determined by (11.2.35)

when ~2 = 1. At the third and farthest away from the sun critical point,

the radial velocity is approximately equal 
to the local Alfven speed as

determined by the total magnitude of the magnetic field. 
Since tan 0 is

small in this region, we expect the third 
critical point to be located

in the immediate vicinity of the second.

The general topology of the solution 
differs little from the one

given by Weber and Davis and a solution 
curve extending from the sun's

surface to large heliocentric distances 
must pass through all three

critical points. A schematic representation of this topology 
is given in

Figure 2; (V2,Z 2) is a node point while 
(V,,Z 1) and (V3,Z3) are saddle



18

Figure 2

Schematic representation of the topology of the solution 
for

u near the critical points.
r
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points. It is then possible to determine the slope of the solution curve

at the saddle points from the values assigned to the dimensionless parameters.

Because of this topology, we choose the third critical point as

the reference radius for the dimensionless equations. This choice will

eventually determine .the success of the numerical integration scheme

utilized to solve the system of differential equations. Hence, at Z = i,

(11.2.42) takes the form

s- - '/4 +4-, /( ,(11.2.43)

from which we obtain for

l (i,-, )/( ,Icos 2  ) (11.2.44)

The denominator of equations (11.2.32) and (11.2.33) vanishes at the

second critical point. Since u and B must remain finite and continuous,w w

we require that the numerators must also vanish at this point. Hence

we must have

4A mnfiz UrC+ BC.c 0 (11.2.45)

and CI and C related by

C -C Br (11.2.46)

where the subscript refers to the flow conditions at the Alfvenic crit-

ical point.

In a frame of reference rotating with the sun B is parallel to u.

In this frame (Pneuman, 1966)

r- (11.2.47)

Be 8,
where-- denotes the angular velocity of the outer layers of the sun.

Introducing (11.2.47) in (II.2.18) we obtain
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C' =- -r (11.2.48)

and

( _ .1r t (11.2.49)

Introducing the dimensionless variables and defining two additional

parameters a.and C, where

o- E R / r (11.2.50)

we can write the azimuthal component of the momentum equation as

- 4 V L (11.2.51)

where tan 0 is given by

4an$ = P(rr 3/'(I-/V?) (11.2.52)

At the reference radius (Z = 1), these equations reduce to

4Yv6 +4. (11.2.53)

and

= & &#1 (11.2.54)

We may proceed in analogous fashion with the energy equation (11.2.30).

Introducing the dimensionless parameters

n u rn; 3 k/ COS 2 (11.2.55)

and

IF/n m I r (11.2.56)

with the thermal conductivity for ionized hydrogen given by (Spitzer,

1962) 57
S_- (11.2.57)

we obtain

/



22

(11.2.58)

The dimensionless parameters, a, B, ( and H, measure the ratios of

various energy flows at the reference radius. In addition

F= (/"Zf IO K q (11.2.59)

that is, the total energy flux per steradian is proportional to the

constant K in the thermal conductivity coefficient (Whang, 1971a). In

reality K is a slowly varying function of the density and temperature

of the gas (Braginskii, 1965) but in the case of the solar wind it may be

assumed constant.

As shown by Whang, a is not an independent parameter. At the

dv
reference radius the numerator of (11.2.40) must vanish in order for d

to remain finite and V continuous across the critical point. Hence,

from equation (11.2.58) we must have

SZ) 4 't E. - - (11.2.60)

and from equation (11.2.40)

-- -11 a $ / i- A A (11.2.61)

The parameter a is thus given by

0( 4:: 2 A i 0A (11.2.62)

and the solutions for V and e have the general form

(ZHY 3 (11.2.63)

For convenience and future reference we sammarize below the principal
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equations obtained in this section and 
the relations among the different

dimensionless parameters defined.

Radial Equation of Motion

_y v ;. l / (11.2.64)d V a2-(Y1 l )- ade/d3 + - Vl (11.2.64

Azimuthal Equation of Motion

W= 4 v +aC4  (11.2.65)

with

4a4 - . <)/va(I- '- I') (11.2.66)

Energy Equation

d+z 2 W + I :z
(II.2.67)

Relations Among Parameters

os2 (11.2.68)

4__ _ _ _ ___S 7_ __ _ _ _ _ ___4_ _ _ (11.2.69)

t~ S4 (11.2.70)

S= t- I 44ef 3gL )/' (11.2.71)

11.3 The Case of a Purely Radial Expansion

In Section 11.2 we have obtained for the radial component 
of thE

momentum equation
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[4kT rGMo i kr.dT -2 BUw Br 1
Urtr _rc - _Uw+ 4Tn mnUlr C -A-) (11.3.1)

r r 2T
r 4TrlnC(_A2)

Whang (1971a), in considering the conversion of magnetic field energy

into kinetic energy in the solar wind, obtained the corresponding

equation for the case of a purely radial expansion as

-4kT 6&Me _ 2kredT

d r [ Ut -2 kT7r-

We immediately observe that the assumption in (11.3.1) that u =0 does

not reduce this equation to (11.3.2). The third term in the denominator

remains divided by the factor (1-A
2 ) which leads to the existence of three

critical points rather than one, as discussed in 11.2.

The mathematical source of this discrepancy lies in the assumption

by Whang that the velocity vector u has the form

S r L(11.3.3)

while the magnetic field vector is represented by

r= Er + (11.3.4)

In other words, the limiting condition u =0 is imposed at the onset of

the analytical development rather than on the final differential equation.

The limits obtained in each case are different, leading to the observed

discrepancy.

Physically, the exclusion of u from the analysis in the manner

described above, implies that transverse flow perturbations that should

propagate parallel to the magnetic field as Alfven waves, are ignored.

Near the sun u >>u , A>>1 and the third term in the denominator
r W
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of (11.3.1) is of opposite sign and smaller magnitude 
than the corresponding

term in (11.3.2). At large heliocentric distances, A<<1 and this term

reduces to that given by Whang. Consequently, the effects of the magnetic

field on the flow velocity are not expected to be as 
large as indicated

by Whang. Modisette (1972) has carried out a limited 
analysis of this

problem and reached similar conclusions. 
The numerical results obtained

in Section 11.4 will show that the effects of the 
magnetic field on the

flow are indeed smaller than those predicted by Whang's model. In par-

ticular the "hose angle" of the interplanetary magnetic 
field is well

behaved in the vicinity of the sun, tending to 1800 as r--

II.4. Numrical Solutions for the One-Fluid Model

At the reference radius (Z = 1) equation (11.2.64) is of the form

() and may be evaluated by making use of l'Hopital's rule. 
The result

is /-

The two solutions of (11.4.1) correspond to the two possible 
branches

of the solution curve for the radial velocity, denoted as Ua and U2

'in Weber and Davis model and indicated schematically 
in Figure 2. The

constants el, e2, f1 and f2 are related to the various 
dimensionless

parameters previously defined, as follows

•(P) d
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(11.4.3)

:(=11. 4.5)

where

A+ o 4  s cat4qliSa +2si4 3,(i&- (11.4.6)

E 4 S (11.4.7)

c, I- ,11.4.8)

C -- a (II.4.9)

C4  - 5 (11.4.11)

C 5 = Q& an~ . 2pda (II.4.12)
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h, ~'4 4,4FaA#4 =-gJQ(bI)/(1) (11.4.13)

- (1 4n (11.4.14)

S/(11.4.15)

4 gt - - I0cL (11.4.16)

The correct solution of (11.4.1) is given by the 
(+) sign and corresponds

to a positive slope at the reference radius.

It is convenient to express the general solutions 
for V and e as

functions of commonly used plasma parameters, 
rather than those given in

(11.2.63). For this purpose we introduce P, the 
ratio of the thermal

pressure 2nkT, to the total magnetic field pressure 
B2/8 . Thus at the

reference radius

and in general

G V2 /V 2$ (11.4.18)

Making use of (11.2.68) it follows that the parameter 
t will be given by

.BL I ..- 2o' C 2 (11.4.19)

once P3 and 03 are specified. The two solutions of (11.4.19) represent

two possible choices for the reference radius. 
The (+) sign corresponds

to the outer critical point r=r 3 where 1>>I, while the (-) sign 
corresponds

to the solution that should have been used if we had chosen r=rl, ( =I'

0= 1) as the reference radius where 
Il. Thus the general solutions 

for

V and 9 depend on five independent, dimensionless parameters, nanmly ,'

, H, 03 and Y. Hence we may write
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(11.4.19)

From the values assigned to these parameters we can compute the physical

location of the outer critical point or reference radius, and the flow

velocity at this point. The results are given by

r= ( f 21/ (11.4.20)

S)' (11.4.21)

We observe that these quantities are uniquely determined by the particular

values chosen for the parameters in a given model. Once a solution has

been obtained, it is not possible to adjust the location of the critical

point to obtain a best compromise between the predicted temperature and

flow velocity at 1 A.U., as the case of strictly radial flow (Whang,

1971a, 1972). In this sense, we expect the solutions to our system of

equations to be unique for the particular set of parameters chosen.

Since the reference radius is located at a certain distance from

the sun's surface, two numerical integrations of the differential equations

starting at the reference radius are required to obtain a complete

solution: a) An inward (towards the sun) integration from the outer

critical point, and b) An outward integration to large heliocentric

dis'ances.

The inward integration must pAss through two additional critical

points and presents the most difficult computational problem. Nevertheless,

the-proximity of the Alfvenic critical point to the reference radius
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considerably simplifies this problem. An inward numerical integration

starting at the outer critical point will always 
pass through the

Alfvenic critical point since this is a node point 
(Fig. 2) and the

integration error accumulated over such a short distance 
is extremely

small and does not affect the solution in the vicinity of Z2 . Thus,

the inward integration problem reduces to that of finding 
a solution

curve starting at the reference radius and passing through 
the inner

critical point. This simplification is the most important reason for

choosing the location of the outer critical point as 
the reference

radius.

Further insight into the behavior of the solutions as a 
function

of the values assigned to the parameters in (11.4.20), may be obtained

by considering certain approximations. The five parameters are expected

to interact to some degree upon the final solution due 
to the non-linear

character of the equations. The purpose of the following approximate

analysis is to find an optimum strategy for 
the selection of parameter

values which will satisfy observed conditions in the solar 
wind, and at

the same time generate solutions passing through all three 
critical

points and satisfying conditions at infinity.

At-the inner critical point (Z1 , V1 , 1 ), the numerator and denom-

inator of (11.2.64) must vanish simultaneously for ur to 
remain continuous

across the point. Hence we must have

2 (11.4.22)
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and

09 4- )2cW~t'~f-anns VO (11.4.23)

The energy equation (11.2.67), at the same point, has the form

(11.4.24)

Thus we only have two independent equations to compute three unknowns

Z1 , V1, 91 and unless we make some assumptions regarding one of the

unknowns the location of the critical point cannot be determined without.

actually integrating the differential equations. Equations (11.4.23)

through (11.4.25) may be normalized to the flow conditions at the inner

critical point by introducing the following parameters

g12;A1V / ; 1- ; Y, = (11.4.25)

..= (11.4.26)

and from (11.4.23) through (11.4.25) we obtain

(,-,)(-,,,) _ ,,/l , (11.4.27)
and

[~ ' a 4,~51 .j d la ( I/~,z.).i. 2 0 (11.4.28)

Hence

/)U i4 441C8z r~ ,4&048J(11.4.29)

These equations are analogous to those obtained for the outer critical

point and we may write

t (11.4.30)
+ (5/z3-0,4
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hence, from (11.4.25)

0,- cp.COS#/ C ~X, (11.4.31)

We now make the assumption that in this region the temperature 
variation

as a function of radius is given by

.. ' (II.4.32)

Hence

M - de (11.4.33)

This assumption is approximately true in the region considered,for 
most

solar wind models. (Hundhausen, 1972); we introduce it here 
for the sole

purpose of estimating bounds for ) at the reference radius. Intro-

ducing (11.4.32) in (11.4.31), we obtain

C3 .4/rA+ O.4
(oo?) vi (11.4.34)

Since (acos2 3/alcos2 l)>l and Z1 must be less than one to represent 
the

inner critical point, we must have

d6 -. 4 (11.4.35)

In addition Il, hence

2 '12 ( (11.4.36)

and neglecting the effects of the azimuthal velocity, from (11.4.24)

we may write d
294 - - F ( (11.4.37)

Introducing (11.4.32) in this expression, it follows that

- 1 4-1 (11.4.38)

The term in parenthesis may be estimated from previous solar 
wind models

and expected conditions at the critical radius and we find that it is
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less than one. Thus, if Z1< 1, we must have m>-l. Equation (11.4.35)

can then be expanded to include this lower bound,

- (d - 0-.4 (11.4.39)

At the Alfvenic critical point, equation (11.2.64) reduces to

(dV2 -W/ z4an 2  (11.4.40)

Because of the proximity of this point to the reference radius, we may

write

tv (. '..-...-' (11.4.41)

Introducing (II1.2..70), it follows that

( - ( 14 T/4= 1-3(11.4.42)

dv
Thus for a given angle ¢3' dz)3 depends almost exclusively on the value

assigned to the parameter 5.

It is now possible to formulate an optimum integration procedure

based on the above results which will generate the desired solutions.

The numerical integration process is optimized by introducing a new

independent variable X such that

X(= 2 (11.4.43)

The governing equations may now be written in terms of this new variable

as follows

where

AC-X') ~/~SV3
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In addition

I (1441 4 i 2() b(> ) 4) (11.4.47)

where 2

" LY - I)V J -- (11.4.48)

and V, is given by equation (11.4.50) below.

Given an initial set of values for the parameters consistent with

expected solar wind conditions at the 
reference radius and such that

equation (11.4.39) is satisfied, equations (11.4.44) and (11.4.47) are

integrated inwards for X>l+e by means of a fourth-order, 
Runge-Kutta

algorithm. This integration is carried out several 
times, each time

adjusting (d)3 by varying C, such that the numerator and denominator

of (11.4.44) vanish simultaneously or within a small fraction 
of an

integration step at the inner critical point. 
Once this condition has

been achieved, the integration is allowed to continue 
towards the sun's

surface. The solution thus obtained is valid in the range r<r<r3 
but not

beyond. Whang (1971c) has shown that once H is specified, the behavior

of the solution for @ for large values of Z is governed 
by the value

assigned to the parameter 7. We now integrate equations (11.4.44) and

(11.4.47) in the outward direction (X<l-e) utilizing 
the value of 5

determined by the inward integration. Again, the process is repeated

several times, each time adjusting y such that e-wo as Z-) . The value
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of 7 thus obtained, is used to find anew value of 5 by the inward

integration procedure previously described and then the equations 
are

once more integrated in the outward direction to find the corresponding

value of 7.

This iterative procedure is necessary because of the non-linear

character of the equations; it is repeated enough times until the inner

and outer solutions match across the reference radius with typically

.01% accuracy. The outward integration is then continued to the limits

imposed by the available computational accuracy and type of computer

used to perform the calculation.

For the problems considered in this work, we have utilized Iverson's

(1962) APL/360 language because of its unique characteristics, accuracy

and conversational nature. A listing of the computer programs developed

to obtain the numerical solution to the one-fluid MHD equations is given

in Appendix A.

A problem that has plagued all models that numerically integrate

the energy equation, is.the extreme accuracy required to specify parameter

values. This is due to the form of the equations when magnetic field

inhibited heat conduction is assumed in the analysis and the requirement

that the solutions must pass through one or more critical points. Our

model is no exception, although the formulation of the equations in the

form given by (11.4.44) and (11.4.47) was found to reduce the accuracy

requirements by several orders of magnitude. To obtain a solution that

passes through all critical points, C must be determined with typically

8-digit accuracy; to extend this solution to approximately 3.5 A.U., 7
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must be determined with 12-digit accuracy, although this figure 
is

strongly dependent upon the value assigned to H. If we try to obtain

numerical solutions beyond this region, the computation time becomes

prohibitive and other mathematical methods must be considered 
to obtain

the desired solutions for the differential equations.

For large heliocentric distances, it is possible to find approximate

analytical solutions for our equations in the form of asymptotic 
series.

At large r, the direction of conduction heat flow is dominated by the

.spiral angle of the magnetic field and the conduction 
heat flux decreases

much faster than the thermal energy flux. Hundhausen (1971, 1972) and

Durney (1971) have shown that in this case the flow at large r corresponds

to an adiabatic expansion with

t -4(11.4.49)

On the other hand, the velocity is expected to approach the limiting

value V=V.; hence in the limit, W, e-o and V-*V,. Equation (II.2.67)

reduces then to

N= )La* +/-,r (11.4.50)

gFor large r we may neglect the azimuthal velocity component and write

the governing equations in the simplified form that follows. Thus

AE do
V (2e- - (11.4.51)

and

.f'9 44 ( 11.4.52)

js ze/ V L
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The formal asymptotic expansions of Whang (1972) can 
now be used to obtain

a solution for these equations valid for large Z. Thus we write

o (11.4.53)

where e=Z -1/3. The leading terms in (11.4.47) represent the expected

behavior of V and 0 as Z-co.

It follows that

- _ 6 (11.4.54)

and

do = p 7 7 [4+ C3+4Cs&J (11.4.55)

The coefficients C.. are obtained by introducing (11.4.53) trough (11.4.55)

in (11.4.51). and (11.4.52) and setting the coefficient 
of every power of

e equal to zero. For the one-fluid model under study we have calcualted

the first few coefficients as follows

CI ,= Y/ Ci = 5S A/2F'P  ) C z =0

c,5 -SC,o (Scc. - )/ P (11.4.56)

Clr = f1 Cr - 39SC, (*S , +A)3 /T P

and

C=, o C.- _ o (SC, , -.- =)/A [,,%+ L , ,+A) ._- C,,,A
(11.4.57)

where

(11.4.58)
and stant A in (11.4.53) is determined from the conditions obtained

The constant A in (11.4.53) is determined from the conditions obtained
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at the point e from the numerical integration such that both solutions

join smoothly at this point. Hence

A o c aclo so- EI (11.4.59)

Once the solutions for V and a have been obtained, we can compute

w= 4-' -4-rVA-k (11.4.60)

and

4 a st 56 &-#)/v C- 3 (11.4.61)

Two solutions to the one-fluid MHD equations have been obtained 
in

the manner described above. The parameter values used in each solution

are given in Table II with the corresponding 
dependent parameter values

and flow conditions at the outer critical point.

We observe that the location of the three critical points 
in each

solution is not very different from that given by the polytropic 
model of

Weber and Davis. The numerical solutions pass smoothly through all crit-

ical points and approach the conditions V=V , W=0 and 0=0 for Z-.

Although both solutions give reasonable values for u and T at 1 A.U.

those corresponding to Solution #2 are in better agreement with quiet

time solar wind observations; numerical values for this solution 
are

given in Table III for 1.08 < r/r. 5 2086.

11.5 Discussion of Results and Physical Interpretations

Figures 3 and 4 show the results obtained for ur, u , T, 1, and

4, for values of the parameters corresponding 
to Solution #1; Figures 5

and 6 show the corresponding results obtained for Solution #2.
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TABLE II

Parameters Solution #1 Solution #2

H 0.8 0.85

3 169.80 169.80

0.19481 0.19531

P3  
0.2 0.2

0.10924 0.097751

Related constants:

a 0.46509 0.31673

0.96529 0.96529

10.035 10.035

6 0.014885 0.01538

a 0.98384 0.98388

U 263.28 Km/sec. 272.98 Km/sec.
r3

u 3.91 Km/sec. 4.198 Km/sec.
W3
r 25.237 26.234

r2  24.829 25.81

r 3.74 3.96

T3 5.01 x 105OK 5.39 x 1050K

u 326.83 Km/sec. 349.86 Km/sec.
0o

3 -0.588 -0.523
d37 

0.1

-dV 0.167 0.173



i. TABLE III

ONE-FLUID MODEL. NUMERICAL SOLUTION 
#2

ur u T 
A2 a(Km/

r/r0  (Km/sec.) (Km/sec.) (OK) dZ (deg) A (Km/sec.)

1.084 22.29 1.99 2.68x10 6  -62.78 179.5 .0189 6101 1975

1.494 47.61 2.50 2.28 -37.70 179.3 .0162 1704 1966

2.065 76.05 3.03 1.93 " -22.75 179.1 .0165 558.8 1798

2.851 107.2 3.53 1.65 " -13.83 178.7 .0190 208.0 1546

3.944 138.3 3.98 1.41 - 8.54 178.3 .0240 84.20 1270

5.465 167.4 4.39 1.19 - 5.30 177.7 .0323 36.25 1009

7.603 195.2 4.65 1.01 " - 3.26 176.8 .0454 16.06 783.8

10.70 220.8 4.77 8.54x10 5  - 1.97 175.6 .0669 7.16 592.8

14.99 242.8 4.70 7.20 "' - 1.21 173.9 .1000 3.32 445.1

21.86 263.9 4.42 5.93 -.700 171.3 .1593 1.43 320.1

29.15 277.8 4.05 5.10 " -.446 168.7 .2280 .768 248.2

39.16 290.2 3.62 4.36 " -.288 165.3 .3277 .407 191.5

52.47 300.8 3.14 3.72 " -.187 161.0 .4631 .218 148.8

71.89 310.6 2.62 3.12 -.118 -2 155.2 .6518 .112 115.0

97.19 318.7 2.16 2.63 " -7.70x10 148.4 .8607 6.02x10
-2 91.74

131.2 325.5 1.74 2.18 " -5.11 " 140.8 1.057 3.23 " 75.48

181.0 331.7 1.36 1.75 " -3.36 " 132.1 1.186 1.66 " 63.84

2E2.6 337.4 1.00 1.30 " -2.08 " 122.3 1.155 7.79x10
- 3 55.66

375.3 341.6 .735 9.44x0 4  -1.36 " 114.1 .9893 3.76 " 51.25

4"9.5 344.4 .569 6.47 -8.32x10
-3  108.7 .7366 2.10 " 49.21

664.8 346.2 .435 4.44 , -4.29 " 104.3 .5309 1.18 " 47.99

C4., 347.4 .331 3.04 -2.21 100.9 .3747 6.66x10
-4 47.28

1177 348.2 .251 2.08 " -1.14 " 98.2 .2610 3.75 " 46.86

1567 348.7 .189 1.42 It -5.87x10-
4  96.2 .1804 2.11 " 46.61

2086 349.1 .143 9.73x10
3 -3.01 94.7 .1241 1.19 46.47



40

Figure 3

The temperature, radial and azimuthal velocities obtained 
for

Solution #1 of the one-fluid model, as a function 
of heliocentric

distance.
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Figure 4

The plasma P and magnetic field angle b as a function of helio-

centric distance for Wolution #1, one-fluid model.
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Figure 5

The temperature, radial and azimuthal 
velocities obtained for

Solution #2 of the one-fluid model, 
as a function of heliocentric

distance.
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Figure 6

The plasma B and magnetic field angle B as a function of helio-

centric distance for Solution #2, one-fluid model.
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The radial component of the expansion velocity is continuous

across the critical points and increases monotonically 
from a few tens

of Km/sec. near the sun, to a few hundred Km/sec. at large heliocentric

distances. Solution #2 gives 334 Km/sec. at 1 A.U., in good agreement

with observations during quiet times.

The azimuthal velocity component first increases with increasing

distance from the sun's surface due to the tendency of the 
plasma to

corotate with the sun. It reaches a maximum around 10r and then decreases

monotonically with increasing distance. The predicted azimuthal velocity

at the Earth's orbit for Solution #2 is 1.19 Km/sec., which is of the

same magnitude as the azimuthal velocities predicted by Weber and Davis,

Urch and Wolff et al.

This value of u disagrees with reported observations of 6-10 Km/seC

for the azimuthal speed; nevertheless the uncertainty in these measurementi

is of the same order of magnitude and further work in this area is

necessary to resolve this conflict.

Weber and Davis have shown that the characteristic deceleration

time for the sun due to the torque produced by the magnetic field and

angular momentum loss can be written as

If we take = -l.25x1012gm sec- we obtain T=7.9xl09 years as the

characteristic deceleration time for Solution #2. As expected this value

agrees with previous results obtained by other authors.

Figure 7 shows the variation of the radial Alfven Mach 
number as a

2 -2is very large
function of heliocentric distance. Near the sun A =MA is very large
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Figure 7

u

The radial Alfven Mach number MA= - /V4mn as a function of

r

heliocentric distance. Near the sun MA <<1 reducing the effect of the

magnetic field upon the radial component of the expansion velocity.
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reducing the effect of the magnetic field 
upon the radial expansion

velocity as discussed in 11.3. The magnetic field angle 0 given in

Figures 4 and 6 remains well behaved 
in the vicinity of the sun and tends

to 1800 for r-*r0 . A plot of the characteristic Alfven speed B/4TTp for

Solution #2 is given in Figure 8, while 
Figure 9 shows the radial

component of VA'

The predicted temperatures at 1 A.U. 
are 1.04x1050K for Solution #1

and 1.54xl05
0K for Solution #2, while the plasma 1 values 

are .89 and 1.19

respectively, in good agreement with 
observations. Table IV summarizes

the flow conditions predicted by this model 
at 1 A.U. and for reference

we have included the predictions of previous 
one-fluid models as reviewed

by Hundhausen (1972).

The values of ur, u , T, ' B, MA and VA calculated, are

independent of the value assigned to the constant 
K in (11.2.57). To

determine the particle number density, heat 
flux, magnetic field, kinetic

and total energy flux, we must assign a value to K. 
From (11.2.55) it

follows that /2

(l f r C05 p (11.5.2)

a' (11.5.3)

- r3 de

a n d ( 2 ( I . 4

The magnetic and kinetic energy flows per steradian 
are respectively

r z(. si( n - L, co)S and 5R Urt 2( I 5)

We find that it is not possible to assign a unique value 
to K that will
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Figure 8

The characteristic Alfven velocity VA= B//4nrm, as a function

of heliocentric distance for Solution #2, one-fluid model.
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Figure 9

The radial component of the characteristic Alfven velocity, VAR

as a function of heliocentric distance for Solution #2, one-fluid

model.

4
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TABLE IV

PREDICTED FLOW CONDITIONS AT 1 A.U. - ONE-FLUID MODELS

Sol. #1 Sol. #2 Whang Urch Whang & Noble & Weber &

(1971) (1969) Chang (1965) Scarf (1963) (Davis (1967)

Radial velocity 317.6 334.4 302 371 260 352 --400

(Km/sec.)

Azimuthal velocity 1.02 1.19 - .623 1.0

(Km/sec.)

Temperature 1.04x105 1.54x105 1.5x105  4.39x105 1.6x105 2.77x105 2x105

(deg. K)

Magnetic field 126.2 127.7 129.5 - - - 1350

angle (deg.)

Plasma Beta .890 1.19 1.58 - -
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give reasonable values for these quantities at 1 A.U. and in the vicinity

of the sun simultaneously. This would imply that the assumption K=const.

is not valid throughout the region considered. In Figure 10 we show the

density and magnetic field intensity obtained from Solution #2 for two

-8 -7 -1 -1 -3.5
extreme values of K=8x10  and K=6x10 7(ergs cm sec deg ). Analogous

results are given in Figure 11 for the thermal energy flux q.

The best agreement with observations at 1 A.U. is obtained when

-7 -1 -1 -3.5
we choose K=.0xl0-7 (ergs cm sec deg ). Table V shows the values

obtained for these quantities at 1 A.U. for different values of K between

the two extreme values considered above.

In Figures 12 and 13 we have plotted the kinetic and magnetic

energy fluxes per steradian as functions of heliocentric distance for

-8 -1 -1 -3.5
K=8xl0 ergs cm sec deg . It is immediately apparent that only a

small amount of magnetic field energy is converted into kinetic energy,

in contrast to the results obtained by Whang. The principal factor

responsible for the 17% increase in radial flow speed obtained by Whang

is the introduction of magnetic field inhibited heat conduction in the

energy equation. Thermal energy piles up behind the obstruction

represented by the field, raising the temperature and increasing the

velocity, (Parker, 1971; Hundhausen, 1972).

The value of the constant K which gives best agreement with obser-

vations at 1 A.U. is 0.16 of the classical Spitzer's value for ionized

hydrogen. Recent observations of radio-star scintillations indicate that

the solar wind is highly turbulent, (Jokipii, 1972). These fluctuations

and waves are an essential aspect of the solar wind and affect the transpo
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Figure 10

The particle number density and magnetic field intensity as a

function of a heliocentric distance, 
for K=8x10

8 and 6x10 ergs cm

sec -1deg-35. Solution #2, one-fluid model.
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Figure 11

The thermal energy flux Q, as a function of heliocentric distance

-7 - - -3.5

for K=8x10
- 8 and 6x10 7ergs cm sec 1deg . Solution #'2, one-fluid

model.
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TABLE V

TOTAL ENERGY FLUX, PARTICLE DENSITY. MAGNETIC FIELD

INTENSITY AND HEAT FLUX PREDICTED BY SOLUTION #2 AT 1 A. U.

K x 107  F x -25 F/r n B q

(ergs cm 1sec deg-3.5)  (ergs sec-lsteradl1) (ergs cm'2sec- 1) (cm-3) (gammas) (ergs cm 2 sec - 1

6.00 33.0 1.487 35.4 17.8 4.62 x 10-2

5.00 27.5 1.239 29.5 16.2 3x84 x 10-2

4.00 22.0 0.991 23.6 14.5 3.08 x 10- 2

3.00 16.5 0.743 17.7 12.6 2.30 x 10-2

1.60 8.25 0.371 8.85 8.9 1.15 x 10
-2  ao

-2o

1.40 7.70 0.347 8.26 8.6 1.07 x 10- 2

1.20 6.60 0.297 7.08 7.9 9.25 x 10- 3

-3

1.00 5.50 0.247 5.90 7.2 7.71 x 10-3

0.80 4.40 0.198 4.72 6.5 6.16 x 10-3

V
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Figure 12

1 22
The kinetic energy flux per steradian, KEF mnurr (u), as

function of.heliocentric distance for K=8xlO -ergs cm sec deg .

Solution #2, one-fluid model.
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Figure 13

The magnetic field energy flux per steradian,

r2B2

EF = (u sin - u sin 0 cos )
4rr r w

-8 -1 -1 -3.5as a function of heliocentric distance for K=8x10 ergs cm sec deg

The amount of magnetic field energy converted into kinetic energy is a

small fraction of the total energy flux.
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coefficients in the plasma reducing the effective heat conductivity along

the magnetic field lines and increasing the energy exchange rate between

electrons and protons, (Hollweg, 1972; Hollweg and Jokipii, 1972; Perkins,

1973). Perkins has argued that Spitzer's conductivity is inapplicable

in the region where the solar wind becomes collisionless and a reduced

value should be used instead. The results obtained from the present

-7

model give support to these hypotheses since the choice of K=6x10-7 near

the sun, corresponding approximately to Spitzer's value, leads to coronal

densities in better agreement with observations (see Figure 10), while

the reduced value K=lxl10
7 gives agreement at 1 A.U. where the wind is

essentially collisionless. These results imply the existence of two

characteristic regions in the expansion process, with a transitional

region in between. We shall consider these concepts in greater detail

in the following chapter and develop a two-region, two-fluid model of

the solar wind.
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III. THE EFFECT OF THE PROTON THERMAL ANISOTROPY

ON THE ANGULAR MOTION OF THE SOLAR WIND

III.1 Introduction to the Problem and Basic Assumptions

The particle velocity distribution function for a uniform,

collisionless plasma in equilibrium in the presence of a magnetic field,

possesses cylindrical symmetry around the field direction and is of the

form

-fC) = ( CIC.L) (III.1.1)

Vhere C and C denote the intrinsic velocity components parallel and

perpendicular to the magnetic field. The second moments of (III.I.1)

give the parallel and perpendicular pressures and are related to f by

Pit M C,, JC

and (III.1.2)

- M= C AC

In addition, the parallel and perpendicular temperatures are defined by

r kTG I = p,, nkTfr - .. ( .1.3)

and the total plasma temperature is

TJ g(2 4  )/3 (111.1.4)

The third moments of f give the conduction heat fluxes

f. - (111.1.5)

and

wh -h are identically zero if f is Maxwellian in form. In a frame of

reference with its e direction aligned with the magnetic field, the
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pressure tensor P will be given by

Spx u t -( f (II.1.6)

where I denotes the unit tensor. Solar wind observations indicate that

in the vicinity of the Earth's orbit the proton pressure 
tensor is aniso-

tropic with P >P and furthermore q 1q O (Hundhausen, 1972), implying

that f deviates from the Maxwellian form and the plasma is not 
in a

state of thermal equilibrium. Figure 14 shows the contour map of a

typical proton velocity distribution function 
reconstructed from obser-

vational data (Hundhausen, 1970).

The pressure tensor P given by (11I.1.6) may be 
used in the

formulation of a more complete solar wind model if the rates of change of

P and P are known. Chew, Goldberger and Low (1956) obtained expressions
II I

for the secdnd moments of the Vlasov equation under the assumptions

described above which may be written as follows

Dt rz n3 1
and (111.1.7)

Since these expressions involve heat flux 
terms the general set

of magnetohydrodynamic equations cannot be closed in terms of known

moments of the velocity distribution function and thus two additional

equations are required to determine q and q.

Whang (1971d) showed that the proton velocity distribution 
function

in the solar wind could be approximated by
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Figure 14

Contour map of the proton velocity distribution function 
at 1 A.U.

as reconstructed from observational data, (Hundhausen, 1970). 
The Z-axis

corresponds to the direction of the magnetic field and points away from

the sun.
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where fo is the bi-Maxwellian distribution function

S( vAA,-, (-2-/)) ( 1.1.)

and

C : 1L - (III.1.11)

These are the dimensionless forms of the intrinsic velocity components;

the dimensionless heat fluxes 7 and 7 are defined by

it ,/A, (nkTtitl) I/A,, nkT. ( .1.12)

The function h is an even function of C and C and in this notation it

takes the form

Using this form of the distribution function it is possible to compute

the third and fourth moments of the Vlasov equation in terms of lower

moments, closing the system of MHD equations. Whang has obtained the

following expressions:

,:: 3 1 1_2BZ Id1 . (r,, rVB- e'r,,U )
M\ / J i #  (III.1.14)Eta k e,. v .- ' v'r=,. ')

and

Equations (111.1.7) and (111.1.14) thus govern the variation of the proton

temperatures TII and TI, and proton heat fluxes qll and q in a collision-

less heat conducting plasma.

Near the sun, the energy exchange rate between electrons and protons

is high and the solar wind behaves as a thermally isotropic one-fluid,

that. is, the electron temperature equals the proton temperature and the
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anisotropy ratio is unity. As we proceed away from the sun the plasma

density decreases and the interaction weakens causing the electron and

proton temperatures to become different and anisotropic due to the presence

of the magnetic field. Early models of the solar wind (Sturrock and

Hartle, 1966; Hartle and Sturrock, 1968) which attempted to incorporate

this effect by means of classical plasma theory based on binary Coulomb

collisions failed to predict anisotropy and the observed solar wind

conditions at 1 A.U. Due to the weak interaction with electrons, the

protons cool off too rapidly leading to an adiabatic expansion at small

heliocentric distances. As a consequence the predicted proton temperature

at 1 A.U. is low while the electron temperature is high leading to values

of the conduction heat flux much higher than observed.

Since'then several mechanisms have been proposed to explain proton

heating beyond the region in which classical collisions play a dominant

role. They include collisionless heating by dissipation of hydromagnetic

waves (Barnes, 1968, 1969; Barnes et al., 1971; Hung and Barnes, 1973),

viscosity (Wolff et al., 1971), coronal Alfven waves (Belcher, 1971), MHD

gpulses (Papadopoulos, 1973) and electrostatic ion cyclotron waves (Toichi,

1971). Perkins (1973), on the basis of radio-star scintillation observations

of the turbulent solar wind, has proposed that magnetoacoustic plasma.

instabilities are responsible for the increased energy exchange rate

between electrons and protons. At this time the exact nature of the

interaction is not known but we may consider an inner region in which

the proton and electron temperatures are equal and isotropic, and an

outer region in which the protons become collisionless and their temperature
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anisotropic. In between there is a transition region in which the protons

are neither collisionless nor isotropic or one-fluid. Figure 15 helps to

illustrate these concepts; the dashed lines represent expected solar wind

conditions as deduced from observations at 1 A.U., while the solid lines

represent results obtained from the two-fluid models indicated.

The two-region concept has evolved from the theoretical work of

Hollweg (1970, 1971), Burlaga (1971), Leer and Holzer (1972), Chen et al.

(1972) and other authors. Whang (1972) has incorporated the two-region

,approach into a two-fluid model of the solar wind. This model, using the

proton distribution function (III.i.7), provides macroscopic as well as

microscopic information about solar wind protons; the results show good

agreement with experimental observations.

The pr'oton thermal anisotropy is of particular importance in the

study of the solar wind angular momentum since the pressure tensor P

given by (111.1.6) will give rise to additional azimuthal forces not con-

sidered in Chapter II of this work. Weber and Davis (1970) have included

these forces, as well as viscosity, in their analysis of the azimuthal

notion, in an effort to explain the discrepancy between observed and

predicted azimuthal velocities at 1 A.U. Nevertheless, the form of

(P -P ) used in their calculations was a simple interpolation formula

(III 1.15)

in T aich the parameter e is varied between e = 1 at 1 A.U. and e = 0 near

the sun and P, PI represent the total thermal pressure (electron and

proton) components parallel and perpendicular to the magnetic field.

Solar wind observations (Montgomery, 1971) reveal that the electron
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Figure 15

The two regions considered in the two-fluid model of the solar

wind. The dashed lines represent expected solar wind conditions as

deduced from observations at 1 A.U., while the solid lines represent

results obtained from previous two-fluid models.
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thermal anisotropy at 1 A.U. is small, with (P /P )~I1; consequently, the

form (111.1.15)) is expected to overestimate electron thermal anisotropy

effects and lead to larger azimuthal velocities at the earth's orbit.

In the following sections we shall expand the model developed in

Chapter II to include the effects of the proton thermal 
anisotropy in the

fashion described by Whang. The electrons will be considered isotropic

throughout and treated in the same way as in Chapter II. In the inner

region we will use the equations developed in Sections 11.2 and 
11.3 to

obtain a one-fluid solution for the model up to a transition point where

the protons will be assumed to become collisionless. From this point out,

we will use the equations developed below to obtain a two-fluid solution

in which the proton temperature becomes anisotropic beyond the transition

point and into the outer region. The general assumptions made in II.1

regarding the interplanetary magnetic field, steady state and 
fluid

behavior of the solar wind, apply without modification to this case.

111.2 Governing Equations for the Outer Region

The equations of mass, momentum and energy conservation given in

Chapter II have to be expanded to incorporate the anisotropic 
proton

pressure tensor P given by (111.1.6), the second moment equations of

Chew-Goldberger-Low (111.1.7) and the third moment equations of Whang

(111.1.14). The general forms (11.2.1), (11.2.2) and (11.2.3) are valid

and we need only consider those terms involving pressure, temperature

and heat flux.

The velocity u and magnetic field B will be expressed as in (11.2.11)



78

and (11.2.12) thus Maxwell's equations apply without modification. Equation

(111.1.6) will represent the proton pressure tensor and may be written as

.p - L - (111.2.1)

Furthermore, the force component due to the proton pressure is given by

(Appendix B)

=F B2 (111.2.2)

The total thermal pressure tensor for our model is then

-P ( kT , ) + t( -T ) ( (III.2.3)

where T denotes the isotropic electron temperature. The radial and
e

azimuthal components of the pressure force are thus given by

n (-;$), T a.)1 t 4
Vrr

(III.2.4)

and

( +4o n k (-r .) cos 256 (111.2.5)

The corresponding components of the equation of motion are obtained by

introducing (111.2.4) and (111.2.5) in (II.2.2) and making use of Maxwell's

equations. The results are respectively

I A dr m LT (+ os1 2 )+ (uosa)1-2Sin + - }
.{ .n e +r 9r (
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6Ho r ( hU- 2, 2kr(1I /-s, a s -r8ui, u' u
-r r L m r 41,nrJ

and (111.2.6)

I 8rI
lr W1 4T

-- .,Lvv .(111.2.7)

We observe in (111.2.7) that the anisotropic proton pressure introduces

additional terms in the azimuthal part of the momentum equation and it

cannot be integrated directly as in Chapter II. These terms will tend

to increase the total angular momentum in the solar wind.

We must now find expressions for the terms in the energy equation

that involve the new form of the pressure tensor, thus we calculate

V. (C.--L ) (= -' h..) 4c0 ?$nkTu~~-ii) - (111.2.8)

-4 iw 410$Smr n k (C7r,

For the heat flux term V._, we have

Z- Fr r 44. (111.2.9)

where qr is now composed of three terms: the radial component of the

electron heat flux and the radial components of the parallel and perpen-

dicular proton heat fluxes. In a collisionless plasma in the presence

of a magnetic field, the proton heat flux is

- . (111.2.10)

For the electrons we consider the inhibited conduction heat flux



- " g 2 (III.2.11)

where d is defined as in Figure Ib, and it follows that

4r 4 d+11 ± '4l + ) (111.2.12)

with

l<e = KTe S  (111.2.13)

Introducing these results in the energy equation, 
we obtain after one

integration

27n r

(111.2.14)

where F is the total energy flux per steradian. We must now obtain

expressions for T , T , q and q from the second moment equations of

Chew-Goldberger-Low and third moment equations 
of Whang. Under the

assumptions made for the model under study, these equations 
take the

respective forms

a -I )=- ( t-#) (III.2.15)

SBr i(II.2.16)
11r) nk 9r

and

1( ) 3 (- - B1iT (111.2.18)
S n 4  ar r

f n r -  1r r

witt,
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(111.2.19)

rr Ur r r \ ',j
In Chapter II we have obtained from Maxwell's equations and conditions

in the sun's vicinity

r(r - 4r w bAw r) c .- 2 r ,- (111.2.20)

hence

atn, ( ! .- (111.2.21)

These equations may now be expressed in dimensionless form by introducing

the dimensionless variables and parameters defined in Chapter II, except

for the dimensionless temperatures which in this case are given by

e =Te /r, ,, = T,/ ; 0L (111.2.22)

and dimensionless heat fluxes

Q q = ? 4,/n/,krTk3u 1Lra (111.2.23)

The parameter oe is now given by

24r C61 3 (111.2.24)

The system of dimensionless equations may be expressed in the compact

form d(III.2.25)

dda eta d-+ -a o

where the coefficients a.. are given by the following expressions:

(111.2.26)

=- (111.2.27)

81. = Vcas2 /2 6 9214 0 Sn (11.2.28
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aIs - 4I 0 17 = V/ 2 (III.2.29)

11 1 2 81 (il Qe 5;%2 42Ca S .2W aj (111.2.30)

These coefficients aj, (i=1,8) correspond to the radial part of the

equation of motion. The coefficients for the azimuthal part, a2 jI (j=1,8)

are

421 a- (u GA) s 2 Cs -ir (III.2.31)

S/422Z=- 2 s A cs . V S (III.2.32)

g23 = - (eoSimno) 2 (111.2.33)

42 = (v co s in )/Z 4ZS -a =42 = O 23)
(111.2.34)

a(o = /2)( Ge1 -eB)sin- $oe 2 $s 4 zS \V/2 (111.2.35)

The equations of Chew, Goldberger and Low may be combined with the third

4
moment equations of Whang to reduce the number of coefficients to be

calculated. The modified third moment equations coefficients are used

in (111.2.25) and may be written as

4a, = (<c/,,))[e< }o,, ( [ - s. i 4/ V') -_s co? 3 (III.2.36)

asz= - A'2 )cos sinad[ea ( (ebic8,s/45 v2) - , (111.2.37)
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4;_3 = _- _, cosz_/4 tV _ 4_4 _35 436 -4 7 - o (111.2.38)

-a 2[ t e A(c 4 tcos) , (I.3.39)

a42  )Ccs#OSu + 8[ , ts CeoS 2fV2 ) (111.2.41)

4.3 -0 ; 444 t '.io p /92J. 4 = a4 7 = 0 4 (III.2.42)

44e 7 . Cos ceOS' )+( )(f4cas2(X - eL Co4 /25v%)
(111.2.43)

The coefficients corresponding to the Chew-Goldberger-Low equations are

given by

51 = (2cos/v) (5 c 84 -mc (I Sin ) (111.2.44)

d*5 . u sn c~g Si~ o81-Zr SblZ. (111.2.45)

as :f) 54 0 (111.2.46)

a- 22 coS
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d56 0 7 = O j

59 f. - aIn(9,)+[ )s Q11+ay (111.2.47)

a61 =(5 ( e f s ) (Z111.2.48)

J =-() I COS (G. 427coS QA) (111.2.49)

46. =o 5 a&4 =1 ) as

4 6 6 zeos (111.2.50)

467 - 0

S:- . 4 a (11, 1 .2.51)

e remaining coefficients a,7j , are associated with the energy equation

d are given by

71= 42 = a 73 .a1 4 = 4 7 4 = ., 7 7C COS (III.2.52)

As = o cd ( 4 eL C* +
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_______ - wr- - C (111.2.53)

The system of equations of (111.2.25) has to be solved in the outer region

of the model to determine the unknown variables V, 9e, ll, e , QII and QI.

In the inner region e =ll= 0 and the equations reduce to those obtained

in Chapter II except for the CGL and third moment equations which were

not considered. We shall find that the transition point from the inner

to the outer regions must be chosen such that it lies beyond the three

critical points previously discussed. Hence, we need not concern ourselves

with singularities in the differential equations since they occur outside

of the region for which the system (111.2.25) is assumed valid.

111.3 Numerical Solutions

We found in Chapter II that the solutions for V(Z) and O(Z) depend

upon five dimensionless parameters 03, 323 Y, C and H. For a given set

of values assigned to these parameters the solutions in the inner region

are found in the same manner as in the one-fluid model up to the boundary

point between the inner and outer regions (Z=Z=r4 /r3 ), with Z >l. At the

transition point all quantities are continuous and we must specify the

value of Q and Q in order to obtain a solution to the system (111.2.25)

in the outer region.

We shall assume that the proton heat flux (Ql +Q ) at the transition

point is that flux available at this radius from magnetic field inhibited

heat conduction by protons as given by the one-fluid solution for the inner

region. Braginskii (1965) gives for the electron and proton heat conduction

coefficients respectively
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where it is assumed that wpp >> and Te, T are the collision times given

bye .5 Io /Q/ T o ) no (111.3.3)

p0x = 3.o 1'- X /10 e P (111.3.4)

and furthermore X , the Coulomb logarithm is taken as 24. if Te=Tp'

it follows that for the one-fluid model

-e3 3 ( 14- 10.04074) (111.3.5)

and

1. .0407o4 (,e (111.3.6)

From equation (111.1.12) we obtain for the dimensionless heat fluxes Q

and Q

mid Q t[ of (111.3.7)

Q (111.3.8)

hence at the transition point Z=Z4

.L (111.3.9)

Introducing (111.3.5) into (11.2.67) and requiring that the total thermal

enirgy flux be continuous across Z , we obtain

072$ 1 4 I"

S 4 (I11.3.10)

and
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.67 8284\14 4  4Cos4 Ae

Thus, once a solution for the inner region is obtained we need only

specify the ratio 71 /7 at the boundary Z=Z 4 to obtain the solution in

the outer region. It is convenient therefore to introduce an additional

parameter defined by

: s ( J' L .= (III.3.12)
and the solutions for V, 0e, eI , , Ql and Q take the general form

{;- f(tmfl3) 3 a' j-J (111.3.13)

The requirement that the solutions extend from the sun's surface to large

heliocentric distances with physically meaningful values, restricts our

freedom to assign arbitrary values to the parameters in (111.3.13). As

discussed in Chapter II. for any given values of H, B3 and 3', C is

adjusted to obtain a solution passing through the inner critical point

while 7 is determined from the condition that the thermal energy flux at

infinity is assumed zero. Thus we may write (111.3.13) as

-f= f(Z , P ,A ) l, ) (111.3.14)

that is, the values obtained for the quantities in a given model depend

upon four independent parameters rather than the six previously indicated.

From (111.3.11) and (111.3.12) it follows that

a782 8V4-Zgfr, 04 CSA 4(de) (111.3.15)

The numerical integration procedure used to obtain solutions to the system

(111.2.25) is the same as the one described in Chapter II. The system of

seven simultaneous non-linear differential equations is written in terms

of the independent variable X=Z-I and the results are given in Appendix C.
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For large Z, asymptotic series solutions may be found by introducing

the formal asymptotic expansions of Whang (1972) in the system (111.2.25).

These forms are given by -

SGe ( + -z 'cj )

(111.3.16)

e. ' A4,s( 14 Cj .)

In addition to the above we introduce

W = A7g E (III.3.17)

as the asymptotic form for the azimuthal dimensionless velocity. For

large Z we may approximate

c i e - - (111.3.18)

W an these forms and their derivatives are introduced in (111.2.25) and

the coefficients of every power of e are set equal to zero, we obtain.

SVC 24 ! 0 (111.3.19)

and the non-zero coefficients Cij for J=1,8 are
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Co-= C('-A4)/IP CII = -5A/Il

c,, = (4A 4 c,<b-A- 5ACz)/,4P

cl4 = (A 4 cAI-5A2c~s)/4S ; C = r -5Az4/4 P

r,- (,/4tP) [-5A 2Cs - 4A4 c C4 (ZV/) (A - A4Y /9)4

.c,., = (./ll)( ACI - A4c47- SAcS)
V'C A- A4 CA - SA C2e)

(III.3.20a)

c,.= (IA,) 2C, 0 (A4 +s Co-, L)

CtZ3 (11/42zl,)[,, (fA +14I- r>')-As,]

Cz4 Cil ( 14 4 tS C /3Aa)

C2 _ (15As)z[244 C46 + (Z4/i) v )

tlCo (( ..3 S 43BAcz2. - 2 A4 c ia+As)- 4 X1eC,:]
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IlqAz.)[. 7A4C47 + 26C~c -4 4 S 1 4 - z2~

cat (-aAt4-2ogSc,5-SA44Ci 4FAZC~) C 14 ((g' 4A4) 4-

£qA.Cz3) - cto(4SI+ A24z4 )~AC

4 Cis +~ 'qyr 
(111.3.20b)

'43

C4eb CIO +~~,

C4 7 2Cii C1 14
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C5  I 4oco(Ca*

C _ -C __4 - 2C 10 (CC53 C

c

(III. 3.20c)

c~~. (Cic t 1 /7)- 2C14 - (IlCit CGS! 17)

C7y4
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C7 C 7)

where as before

and (111.3.21)
2.

The coefficients A. are obtained by successive iterations such 
that the

numerical and asymptotic solutions join smoothly together at a given 
value

of Z.

SWe have obtained two solutions to the system of differential 
equations

(111.2.25) in the outer region and the corresponding one-fluid 
solutions

for the inner region. The parameter values used in each case are given in

Table VI, while the computer programs developed for the two-region 
model

ar. given in Appendix D. The one-fluid solutions are obtained by the same

procedure described in Chapter II. The transition point from the one-fluid

formulation to the two-fluid description is chosen at Z=3.3 (--0.4 A.U.)

and the ratio of y to y (l1) as 4.62 in both cases. These values were
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TABLE VI

Parameters Solution #3 Solution #4

H 0.8 0.85

3 169.80 169.80

.1948 .1953

P3 .200 .200

7 .10911 .097257

S4.62 4.62

Related constants

a .4645 .31455

p.96529 .96529

10.035 10.035

6 .01488 .01538

S.98384 .98388

Ur 263.38 Km/sec. 273.44 Km/sec.

uw3  3.92 Km/sec. 4.20 Km/sec.

r3 25.247 r. 26.278 r6

r2 24.839 r. 25.854 r.

r1 3.75 r 3.965 r

T3  5.01x10 5  5.41x105

u 326.95 Km/sec. 350.45 Km.sec.

do) -.58753 -.5184

dV .16748 .17314
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TABLE VI (CONTINUED)

Parameters Solution #3 Solution #4

Asymptotic Solution

r 421 752
a

A2  6.1625 12.035

A3  17.346 20.067

A4  .7702 .8056

A5  3.6174 6.9959

A6 .03617 .07407

A7 2.6172 2.5661
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selected to obtain reasonable agreement with experimental observations

for the proton temperature and anisotropy ratio at 1 A.U.

111.4 Results and Physical Interpretations

The results obtained for the radial velocity ur , azimuthal velocity

u , electron temperature Te and proton temperatures T and T are

shown in Figure 16 for Solution #3 and Figure 17 for Solution #4. The

radial velocity solutions are essentially the same obtained previously

for the one-fluid models since similar values of the parameters have been

used in the calculations.

The azimuthal velocity solutions for the inner region are of the

same general form as in the one-fluid models; in the outer region the

effect of the proton thermal anisotropy is to increase the azimuthal

speed as shown in the figures. The dashed curves represent the more likely

physical situation rather than the abrupt transition predicted by the model.

Since the fluid is assumed inviscid, the increase in azimuthal velocity is

due solely to proton thermal anisotropy effects. The predicted azimuthal

velocities at 1 A.U. are 1.44 Km/sec. for Solution #3 and 1.68 Km/sec.

for Solution #4. These values should be compared with those obtained from

the one-fluid models in Chapter II, 1.02 Km/sec. and 1.19 Km/sec.

respectively. Thus the increase in azimuthal velocity at 1 A.U. is of

the order of 0.5 Km/sec.

Weber and Davis (1970), in considering the effects of thermal

anisotropy and viscosity in the solar wind, incorporated an ad-hoc

relationship for P which tends to overemphasize the effects of the electron
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Figure 16

The radial and azimuthal velocities, the electron temperature

and parallel and perpendicular proton temperatures obtained 
for Solution

#3 of the two-fluid model, as a function of heliocentric distance. The

dashed lines represent a possible physical situation for the azimuthal

velocity in the transitional region.
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Figure 17

The radial and azimuthal velocities, the electron temperature

and parallel and perpendicular proton temperatures obtained for Solution

#4 of the two-fluid model, as a function of heliocentric distance. The

dashed curve represents a possible physical situation for the azimuthal

velocity in the transitional region.
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anisotropy upon the angular motion. They obtained u =6 Km/sec. at 1 A.U.

although this was accomplished assuming a one-fluid model in which the

viscous stress is greatly enhanced by the elevated proton temperature

assumed.

More recently Urch (1972) has given a perturbation solution to the

one-fluid, isotropic MHD equations, which predicts a mean azimuthal

velocity of 1-2 Km/sec at 1 A.U., with excursions of - +10 Km/sec. caused

by the rotating sector structure of the magnetic field. Since ours is a

steady state model, we cannot calculate time-dependent effects but the

range of azimuthal velocities that can be considered at the reference

radius for which physically meaningful solutions can be obtained, is

considerably smaller than the excursions indicated by Urch.

We can conclude from the results obtained in this Chapter, that the

effects of thermal anisotropies upon the angular motion of the solar wind

are relatively small and cannot increase the predicted azimuthal speed at

1 A.U. to values in agreement with observations.

The temperature profiles obtained for the inner region are analogous

to those calculated for the one-fluid models. In the outer region where

the proton thermal anisotropy is allowed to develop, the ratio of T to

T increases rapidly with increasing heliocentric distance reaching a
p1

maximum value of N1.7 at 200 solar radii for both solutions. This ratio

then decreases monotonically and becomes less than one for large heliocentric

distances, as shown in Figures 18 and 19. The total proton temperature is

given by - (r ' zT ., ,)/ (111.4.1)
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Figure 18

The proton thermal anisotropy ratio 
T p/T Pand the proton to

electron temperature ratio T p/Te as a function of heliocentric distance,

predicted by Solution #3, two-fluid 
model.
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Figure 19

The proton thermal anisotropy ratio 
T /T and the proton to

electron temperature ratio T /Te as a function 
of heliocentric distance,

predicted by Solution #4, two-fluid 
model.
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The dashed lines show the probable physical situation rather than 
the

idealization assumed in the model.

It is of interest to consider the possibility that 
wave modes

associated with plasma instabilities may be excited 
in the plasma due to

the anisotropic proton pressure. Two particular types of instabilities

warrant consideration: the firehose and mirror instabilities. These

instabilities will occur if the following criteria are satisfied,

(Clemmow and Dougherty, 1969; Krall and Trivelpiece, 
1973)

e - 1) >(2/P,.) (firehose) (II1.4.2)

> (mirror) (111.4.3)

where

/ = nk J(e/ r ) (111.4.4)

and we have neglected the effect of the electrons since they 
are assumed

isotropic. When the instability criteria given by these equations are

imposed on our solution we find that (111.4.2) and (111.4.3) are nowhere

satisfied and hence no instabilities are expected to occur in the plasma;

the magnetic field pressure is everywhere greater than the proton 
thermal

pressure.

The plasma B and magnetic field angle 0 are given in Figures 20

and 21, where nk(Te.y )/(8/8T) (111.4.5)

As in the case of T and T 1 the P curve shows an abrupt slope change

at the boundary between the inner and outer regions caused by the

idealizations assumed in the model.
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Figure 20

The plasma 5 and magnetic field angle 0 as a function of helio-

centric distance. Solution #3, two-fluid model.
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Figure 21

The plasma B and magnetic field angle 0 as a function of helio-

centric distance. Solution #4, two-fluid model.
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Flow conditions predicted by the two-region model 
at 1 A.U. are

summarized in Table VII and compared with results 
obtained from previous

two-fluid models. The quantities show generally good agreement with

quiet-time solar wind observations. Tables VIII and IX give detailed

numerical results for Solutions #3 and #4 in the inner and outer regions.

These two solutions represent typical limits of observed electron temperature

conditions at 1 A.U.

The quantities obtained and given in the 
tables, are independent of

the value assigned to the thermal conductivity constant K, (see 
Chapter II).

To compute the density, energy flow and magnetic field 
intensity we have

chosen K = 1.0x10
- 7 for Solution #3 and K = 1.0xl0

- 7 for Solution #4;

these values of K give results that agree reasonably well 
with experimental

observations at 1 A.U.

Figures 22 through 25 show the magnetic field intensity, 
density

and heat fluxes predicted by the present model as a function of helio-

centric distance. Table X summarizes the values predicted for these

quantities at 1 A.U. For completeness, Figures 26 through 29 show 
the

*magnetic field and kinetic energy flows per 
steradian obtained in each case.

As in Chapter II, we find that the amount of magnetic field 
energy converted

into kinetic energy is small and has little effect upon 
the final expansion

velocity.

The microscopic properties of the solution for the proton 
distribution

function are determined by the values obtained for 7 , 7 , Tpl and T

From equations (111.3.7) and (111.3.8) it follows that



a TABLE VII

PREDICTED FLOW CONDITIONS AT 1 A.U. - TWO FLUID MODELS

Sol. #3 Sol #4 Whang Wolff et al., Hartle &

(1972) (1971). Sturrock, (1968)

Radial Velocity 317.7 335.2 331 303 250

(Km/sec.)

Ailmuthal Velocity 1.44 1.68 - 1.8 -

(Km/sec.)

5 5 5 5 5
Electron Temperature 1.34x10 1.98x05 1.52x10 5  2.03x10 5  3.5x10 5

(OK)

Parallel Proton 9.41x10 1.17x105  1.19x105

Temperature, (OK)

Perpendicular Proton 6.41x10 6.89x10 5.30x10 -

Temperature, (OK)

Total Proton Temperature 6.75x10 8.5x10 7.5x104  4.0x104  4.4x10 3

(K)

Proton Thermal Anisotropy 1.73 1.70 2.23 -

Ratio

Magnetic Field Angle 123.30 127.70 130.10 1250

Plasma B .860 1.09 1.09 -



TABLE VIII

NUMERICAL SOLUTION FOR THE INNER REGION

SOLUTION #3

ur uW  T do 0
r/r (Km/sec.) (Km/sec.) (OK) dZ (deg.)

1.274 36.91 2.22 2.51x106 -52.72 179.4 .01879

1.843 66.29 2.80 2.06 "r -29.54 179.2 .01801

2.626 98.64 3.34 1.71 " -17.15 178.8 .02040

3.733 129.5 3.88 1.42 " -10.21 178.3 .02612

5.459 165.7 4.21 1.17 " -5.699 177.6 .03573

8.240 198.2 4.47 9.39x10 -3.092 176.4 .05454

12.00 223.8 4.49 7.65 " -1.772 174.9 .08318

19.08 250.0 4.22 5.90 " -0.892 172.1 .1434

28.05 267.9 3.78 4.71 " -0.500 168.7 .2265

37.68 279.3 3.35 3.94 " -0.321 165.3 .3192

50.50 288.9 2.89 3.29 " -0.205 160.9 .4412

69.18 297.6 2.40 2.70 " -0.121 155.0 .6073

84.18 302.2 2.10 2.40 " -0.079 150.7 .7301



TABLE VIII (CONTINUED)

NUMERICAL SOLUTION FOR THE OUTER REGION

SOLUTION #3

u r  T T T de
rr® (Km/sec) (Km/sec) P p Q Q e

Kmsec) (Kmsec) (OK) (OK) I (OK) dZ (deg)

5.61 302.6 2.13 2.37x10 5 2.33x10 5 1.29x10 3 5.41x10 4 2.38x105 -7.63x10 2  150.4 .736

L7.4 309.1 2.25 1.87 " 1.34 " 5.51x10 "  1.31 " 1.99 " -4.91 " 142.5 .840

52.9 314.3 1.88 1.33 " 7.89x104 1.75 " 2.89x10 "5 1.62 " -3.23 " 133.6 .891

?9.7 318.4 1.32 8.46x10 4 4.89 " 4.38x10 6.13x10 1.27 " -2.12 " 124.3 .843

15.9 321.2 0.89 5.13 " 3.25 " 1.06 " 1.54 " 9.61x104 -1.41 " 116.6 .715

63.6 323.3 0.538 2.64 " 2.07 " 1.66xl0 6 3.15x10 6.33 " -9.71x10-3 108.9 .512

17.0 324.6 0.379 1.57 " 1.51 " 3.65x10 8  9.96x10 4.24 " -4.78 " 104.5 .362

12.3 325.4 0.278 9.10x103 1.12 " 8.32x10 3.18 " 2.86 " -2.39 " 101.0 .252

093 325.9 0.208 5.21 " 8.33x10 1.93 " 1.02 "-9 1.94 " -1.20 " 98.34 .175

455 326.2 0.157 2.96 " 6.22 " 4.57x10 3.29x10 1.32 " -6.14x10 96.29 .121

936 326.5 0.119 1.68 " 4.66 " 1.08 " 1.05 " 10 9.00x103 -3.13 " 94.74 .084

577 326.6 0.090 9.53x10 3.49 " 2.59x10 1 3.39x10  6.14 " -1.60 " 93.56 .059

431 326.7 0.068 5.38 " 2.62 6.20x10 1.08 " 4.19 " -8.20x10 92.68 .041

566 326.8 0.052 1.96 " 1.48 " 1.48 "-12 3.48x10 2.86 " -4.2 " 92.01 .029

078 326.8 0.039 1.71 " 1.47 " 3.55x10 1.11 1 1.95 " -2.15 " 91.51 .020



TABLE IX

NUMERICAL SOLUTION FOR THE INNER REGION

SOLUTION #4

u u T 0
r/r r oK dZ (deg.)

(Km/sec) (Km/sec) (K) dZ (deg.)

1.206 31.88 2.16 2.54106 -52.95 179.5 0.0176

1.665 56.61 2.68 2.15 " -31.81 179.3 0.1600

2.301 86.32 3.20 1.83 " -19.25 179.0 0.0171

3.179 117.8 3.68 1.56 " -11.70 178.6 0.0204

4.409 147.3 4.17 1.32 " - 7.30 178.1 0.0266

6.100 177.0 4.49 1.13 " - 4.50 177.4 0.0360

8.462 203.6 4.71 9.61x105  - 2.78 176.5 0.0511

11.92 228.2 4.77 8.08 " - 1.69 175.1 0.0759

16.92 250.0 4.63 6.76 " - 1.01 173.2 0.1161

24.98 270.6 4.31 5.53 " -0.577 170.2 0.1880

32.24 282.6 3.92 4.86 " -0.380 167.7 0.2580

43.44 294.6 3.46 4.16 " -0.240 163.9 0.3720

58.40 304.8 2.97 3.57 ' -0.149 159.2 0.5280

79.65 313.9 2.46 3.07 " -0.085 153.0 0.7470

87.62 316.4 2.32 2.95 " -0.069 150.9 0.8278



TABLE IX (CONTINUED)

NUMERICAL SOLUTION FOR THE OUTER REGION

SOLUTION #4

u U T  T T dger/r® (Km/rec) l(m/ec) TP. Q e 1
S(/ec) (Km/ec) (OK) (OK) (OK) dZ (deg)

89.10 316.9 2.35 2.92xi5 2.86x105 2.28x0 9.57x10 "4 2.93x10 5 . -6.61x10 "2  150.5 .835

122.2 325.0 2.52 2.26 " 1.63 " 9.22x10 2.38 " 2.56 " -4.28 " 142.8 .975

169.6 331.5 2.10 1.58 " 9.66x104  2.92 " 5.50x10 5 2.22 " -2.85 " 134.0 1.07
4 -5

239.1 336.8 1.48 9.96x10 5.88 " 7.40x10 1.23 " 1.87 " -1.95 " 124.8 1.08
-6

328.8 340.5 1.01 6.00 " 3.89 " 1.83 " 3.20x10 1.55 " -1.41 " 117.0 .997

526.6 344.4 .559 2.60 " 2.24 " 2.03x10 6  4.64xi0 7 1.07 " -8.42x10 3  107.8 .749

752.9 346.6 .376 1.32 " 1.52 " 3.62x10 1.09 " 7.42x10 -5.89 " 102.7 .535

1002 347.8 .280 7.60x10 1.12 " 8.34xi0 3.49x10 5.01 " -3.31 " 99.69 .372

1333 348.7 .211 4.33 " 8.38x10 3  1.95 " 1.11 " 3.40 " -1.67 " 97.33 .257
-9 -9 -4

1775 349.2 .160 2.46 " 6.26 " 4.62xl0 3.55x10 2.31 " -8.51x10 4  95.52 .178

2363 349.6 .121 1.39 " 4.69 " 1.10 " 1.13 " 1.57 " -4.34 " 94.16 .123
2 -10 -10

3145 349.9 .092 7.88x10 3.51 " 2.62x10 3.62x10 1.07 " -2.21 " 93.13 .085
-11 3

4186 350.0 .070 4.45 " 2.64 " 6.27x10 1.15 " 7.32x10 -1.13 " 92.35 .059

5572 350.2 .053 2.51 " 1.98 " 1.50 " 3.69xi0 4.99 " -5.81x10  91.77 .040

7416 350.3 .040 1.42 " 1.48 " 3.59x10 1.17 " 3.41 " -2.98 " 91.33 .028
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Figure 22

The particle number density and magnetic field intensity as a

-7 -1 -1 -3.5

function of heliocentric distance, for K=1.OxlO ergs cm sec deg

Solution #3,' two-fluid model.
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Figure 23

The electron conduction heat flux Qe and proton heat fluxes Qll

-7 -1
and Q as a function of heliocentric distance, for K=1.0x10 ergs cm

sec -ldeg-3 . Solution #3, two-fluid model.



10 -

SOLUT!ON #3, TWO FLUID MODEL

K 1.0 x 10- 7 ergs cm "' sec" deg -3.5

QEo
0

911

ooil
cm -5

E

0 
10

I

I \
I 0 102 t I AU 10 10

r/ r



120

Figure 24

The particle number density and magnetic field intensity 
as a

-7 -1 -1 -3.5
function of heliocentric distance, for K=l.0x1

0  ergs cm sec deg

Solution #4, two-fluid model.
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Figure 25

The electron conduction heat flux Qe and proton heat fluxes Q

-7 -1

and Q as a function of heliocentric distance, for K=1.0x1
0  ergs cm

sec-l deg-3.5 Solution #4, two-fluid model.



oDJ /i

£to 901 f-v I Z. 1O 01

0!0

01

90



TABLE X

TOTAL ENERGY FLUX, PARTICLE NUMBER DENSITY, MAGNETIC FIELD INTENSITY AND

HEAT FLUXES PREDICTED BY THE SOLUTIONS AT 1 A.U. FOR K = 1x10- 7 (ergs-

-1 - -3.5
cm -sec l-deg -

3 ).

Solution #3 Solution #4

F x 1025
(ergs-sec -sterad ) 5.68 5.54

F r -2 -1
(ergs-cm -sec ) 0.256 0.249

n-3(cm ) 7.31 5.85

B
(gammas) 7.69 7.24

qe -2 -1 4.26x10 3  .x-2
(ergs-cm -sec ) 4.26x-0 1.10x10

11 -2 -1 -5 -4
(ergs-cm -sec ) 7.00x10 1.15x10

1 -2 -1 1 5  51
(ergs-cm -sec )1.00x10 1.94xi0
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Figure 26

1 22
The kinetic energy flux per steradian, KEF 

=  mnu r (u ) as a

function of heliocentric distance, for K=l.0xl0 ergs cm sec deg

Solution #3, two-fluid model.



25.75-

SOLUTION * 3

TWO- FLUID MODEL
25.25 -I .g ..za

K 1.0 x 10- 7 ergs cm sec'deg 3

S24.75

~0

24.25

23.75 I I

S10 102 t I AU 103  104

r/r 0



127

Figure 27

The magnetic field energy flux per steradian,

MEF = ( u sin2 - u sin 0 cos ¢ )MEF r 

-7 -1 -1 -3.5
as a function of heliocentric distance, for K=1.0x10 ergs cm sec deg

Solution #3, two-fluid model.
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Figure 28

The kinetic energy flux per steradian as a function of helio-

07 -1 -1 -3.5
centric distance for K=1.0x10 ergs cm sec deg . Solution #4,

two-fluid model.
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Figure 29

The magnetic field energy flux per steradian as a function of

-7 -1 -1 -3.5
heliocentric distance for K=l.0x10 ergs cm sec deg . Solution #4,

two-fluid model.



24.38-

24.36 - TWO- FLUID MODEL

SK=I.Ox 10 ergs cm' sec'deg3 5

24.30.

-
I

o I

24 ?

S10o 102 IA.U. 03  10 4

r/ ro



133

( a~~,, (111.4.6)

- e (111.4.7)

The values of y , Y I T and T obtained for various selected heliocentric

distances are given in Table XI and Figures 30 through 43 show plots of

constant contour maps of the proton distribution function for the parameter

values given in the table. The velocity scale for each map has been

normalized to the local characteristic thermal velocity as determined by

the perpendicular temperature. The axis OZ is parallel to the magnetic

field direction, facing outwards from the sun.

The maximum value of the distribution function is attained at point

0 and the triangle denotes the point in velocity space where the proton

intrinsic velocity is zero. A comparison of the contour maps obtained

at 1 A.U. with that given in Figure 14 shows that the form of the distri-

bution function used in the analysis can adequately represent observed

solar wind properties.

Whang has given several scale times obtained from the purely radial

model such as deflection time, equipartition time and expansion time.

Since the general features of the solution affecting the calculation of

these times are not very different from those obtained by Whang, we shall

not repeat the computation here. The equipartition time between electrons

and protons is much larger than the expansion scale time implying that

thermal equilibrium between the two fluids cannot be maintained by Coulomb

interactions alone. We must resort to the physical phenomena mentioned

previously to explain the increased proton heating within the solar envelope.



af TABLE XI

PARAMETER VALUES WHICH DETERMINE THE PROTON DISTRIBUTION FUNCTION

AT SELECTED HELIOCENTRIC DISTANCES

rlrE T T T T T/T 7 7 T T T /T
rr U] 4 P3 P PHI P1 II 4 PI P4 PUI p1

SOLUTION #3 
SOLUTION #4

107 (.5 A.U.) .378 .067 2.02x105 1.57x10
5  1.28 .532 .102 2.54x105 2.06x10

5  1.23

214 (1 A.U.) .403 .0498 9.40x104 5.42x10
4  1.73 .601 .0867 1.17x10

5  6.89x10
4  1.70

4 
4 1.33

428 (2 A.U.) .384 .0437 3.05x10 2.28x104  1.33 .616 .0819 3.83x10 2.86x10 1.33

1112 (5.2 A.Uo), 
1.01xl04 .613

Jupiter .269 .0444 5.21x103 8.33xl03 .625 .578 .0831 6.2x10310 .613

2033 (9.5 A.U.), 3 3 3 3 .345

Saturn .258 .0455 1.54x10
3  4.46x103 .345 .553 .0842 1.89x10 5.48x10 .345

4066 (19 A.U.), 273x0 .174

Uranus .256 .0463 3x85x10 2.22x103 .173 .546 .085 4.75x102  2.73x103  74

6420 (30 A.U.), 2 1x103 .110 .546 .0853 1.90x102 3

Neptune .256 .0466 1.55x10 1.4x103 .110 .546 .0853 1.90x10 1.73x .110
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Figures 30 through 36

The proton velocity distribution function predicted 
by Solution

#3 for selected heliocentric distances. The velocity scale has been

normalized to the local characteristic thermal velocity determined by

the perpendicular temperature.
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Figures 37 through 43

The proton velocity distribution function predicted by Solution

#4 for selected heliocentric distances. The velocity scale has been

normalized to the local characteristic thermal velocity determined by

the perpendicular temperature.
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IV. SUMMARY AND CONCLUSIONS

This dissertation has considered the solution of the steady state

magnetohydrodynamic equations governing the supersonic 
expansion of the

solar corona into interplanetary space under various assumptions regarding.

the form in which proton thermal energy is carried away from the sun.

The fluid has been assumed to be inviscid and the flow axially

symmetric about the sun's rotation axis.

In Chapter II we have obtained detailed numerical solutions to the

-one-fluid formulation of the MHD equations under the assumption that thermal

energy is carried away by heat conduction from a thin shell 
heat source

located at the base of the corona. The effects of the angular motion of

the solar wind are included in the model as well as a complete description

of the magnetic field, leading to the existence of three critical points

through which the solution must pass in order to extend from the sun's

surface to large heliocentric distances. The magnetic field is further

assumed to inhibit the flux of thermal energy perpendicular to the field

lines, leading to an adiabatic expansion at large r with T r 4 / 3

The values predicted for the flow quantities at 1 A.U. are in good

agreement with quiet-time solar wind observations except 
for the azimuthal

component of the expansion velocity which is approximately 
a factor of

five smaller than indicated by reported observations. This discrepancy

may be due in part to the large degree of uncertainty associated 
with the

experimental values and further work in this area seems to be 
necessary.

A two-fluid formulation of the MHD equations was obtained in Chapter
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III in which the protons are assumed to become collisionless and

anisotropic beyond an arbitrarily selected radius; the evolution of the

proton temperature and heat flux can then be described by 
the Chew-

Goldberger-Low theory and third moment equations of Whang, leading to a

closed set of differential equations which admits numerical and asymptotic

solutions. These equations were then applied to a solar wind :model

consisting of two regions: a) An inner region in which the energy exchange

rate between protons and electrons is sufficiently high such that their

temperatures are essentially equal and isotropic; under these conditions

the model is adequately described by the one-fluid formulation of the MHD

equations, and b) An outer region in which the protons are assumed to

become collisionless and anisotropic beyond a given radius. The electrons

are assumed.everywhere isotropic and the associated heat flux due to

conduction alone. The two-fluid formulation of the MHD equations is

utilized in the outer region to obtain numerical and asymptotic solutions

for the flow quantities throughout interplanetary space. In addition,

the formulation of the CGL-Whang moment equations allows us to obtain

microscopic information about the proton distribution function for various

heliocentric distances.

The results obtained from the two-region model are in good agreement

with experimental observations. In particular, it is shown that the effect

of the proton thermal anisotropy upon the angular motion is small and does

ne t significantly increase the predicted values for the azimuthal velocity

at 1 A.U.

From the solutions obtained for the models described above, we find
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that the amount of magnetic field energy converted into kinetic energy

in the solar wind is small and has little effect upon the expansion

velocity. The most important effects of the magnetic field are the

retarding torque exerted upon the outer layers of the sun's atmosphere

and the inhibition of the flow of thermal energy across the field lines,

making possible a more complete conversion of this type of energy into

kinetic energy in the acceleration region.

Finally, we find that in order to obtain reasonable values for the

particle density, magnetic field intensity and energy fluxes at 1 A.U.,

it is necessary to use a reduced value of the thermal conductivity co-

efficient.

This value is approximately 1/6 of the classical Spitzer's value

and leads to 'coronal densities which are almost two orders of magnitude

lower than observed. These results give support to recent theoretical

work indicating that the magnetic field and plasma instabilities play an

important role in modifying the plasma transport coefficients.

df
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APPENDIX A

The computer programs developed to obtain solutions to the one-

fluid model equations are written in APL/360 language and listed below.

The outward integration program is "MAIN"I with subprograms "PARAM',

"START", "SOLWIND2" and "DER"o

The corresponding program for the inward integration process is

"IMAIN" with subprograms, "PARAM1", "PARAMs, "gSTART", "SOLWIND2"' and "DER' .

The asymptotic solution is obtained by the program "ASOL" with subprograms

"PARAM1 and "PARAM'.

The density, heat flux, magnetic field intensity and kinetic and

magnetic field energy flows in all regions, are computed by the program

uDBQ'O .
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VMAIN[O] V
V MAIN;IC;FG;Xl; KM;KL

[1] 'ENTER BETASTAR'
[ 23 BSTR+n
[3] KL-KM-0
[4] 'ENTER ZETA'
[5] ZETA-0
[6] 'ENTER PHISTR IN DEGREES'
[7] PHISTR+ x(02-360)
[8] 'ENTER GAMMA'
[9] GAM+0
[10] 'ENTER IH'
[11] H-0
[12] 'ENTER STEP SIZE, MAX. Z AND PRINTOUT INTERVA

L '
[13] IC-0
[14] 'ENTER DGAM AND NO. OF EXECUTIONS'
[15] AL-0
[16] . IJ-1
[17 XM+1
[18] M11:PARAM
[19] START
[20] M12:SOLWIND2
[21] FG (7,(pZF))p(ZFxRST'69600000000),(VFxUST),(WFx

DELxUST),(THETAFxTST),DODZF,(PHIFx360+o
2),BETAF

[22] TSOL+ZF[p',ZF],VF[p,VF],THETAF[p,THETAF]
[23] MAT- 2 1 OFG
[24] - (MA=2)/0
[25] +(MA=1)/M13
[26] KM-1
[27 -M114
[28] M13:KL-1
[29] M14:-((KL=1)x(KM=1))/H15
[30] -M16
[31] M15:AL[1]+AL[1]+2
[32] M1I6:+(MA = 1 ) / M17
[33] GAM-GAM-AL [1
[34] -M18
[35] M17: GAM4-GAM+ALE 13
[36] M18:IJ-IJ+1
[37] +(IJ=AL[23)/M19
[38] -Mll
[39] M19:'PROGRAM EXECUTED ';IJ;' TIMES;WISH TO

SAVE?'
[40] M11
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VPARAMC[ O V
V PARAM;A;B;OMIE;GtMSN ;XP;BP

[1] OME+2.92E 6

[2] GMSN-1.33E26
[3] XIT((-2)+-BSTR)+(((('2)++BSTR)*2)-(2x(2oPHISTR)*

2) BSTR)*0. 5
[4] UST-(G 1SNxOME !GAMxZETA)* 3
[5] RST+((GMSNxZETA*2)+GAxMOIE*2)* 3
[6 PSI+3oPHISTR
[7] DEL PSI+ZETA
[8 MU+(1-XI) (1-(XI'((2oPHISTR)*2)))
[9] SIG-(1+(PSIxi-?U)+ZETA)*0.5
[10] A-2+(XIxDEL*2)+(2xDELxXIxMUxPSI1-MU)-GAMxXI
[11] B+XIx(O.5x1+DEL*2)+(MUxPSI*2)+(5+2xXI)-H+GAM+DEL

xMUxPSI
[12] ALPH-A B

[13]. MASS+(1836x9.1066E-28)+(0.05x
6.6442E-24)

[14] BC 1.38E 16
[15] TST+(ASSxUST*2)(2 xBCxXI)
[16] XP-0,(-2xH).(2xMUxZETA*2)
[17] VINF+(CUBIC XP)[13
[18] 'GAMMA: ';GAM; ' RSTAR: ' ;(RST

69600000000);' BETASTAR: ';BSTR

[19] ' PHISTAR: ';PHISTRx(360+o2);' XI: ';XI

[20] ' H: ';H;' USTAR: ';UST

[21] 'ZETA: ';ZETA;' PSI: ';PSI

[22] 'DELTA: ';DEL;' MU: ';MU

[23] 'SIGMA: ';SIG
[24] ' ALPHA: ';ALPH;' TSTAR: ';TST;' U

INF: ';(VINFxUST)
V



157

VSTARTW] V
V START;A1 ;A2 ;B1 ;B2 ;C1 ;C2 ;C3 ;C4 ;C5 ;D1 ;D2 ;P;E1 ;Q;F1

;F2 ;R;S;T
E1] DODZST4-2+(X~xDEL*2)i(2xDELxXIxMfUxPSIa1-MfU)-GAM,,x-

[2] A1l-((C3xMU)-1+( 1+MU)xSIG*2 )*t(1-MU)x(-l+SIG*
2)

[3] A2-i- -(1-11U)
[4] Bl~-ZETA+AlxPSI-
[5] B2-PSIx1+A2
[6] C1-++UxPSI*2
[7] C2-CDEL*2)-DELxtMUxPSI
[8] C3-(2x?I'UxPSI)-DELxtfU
[9] C4*54t2xXI
[10] C5-C2xDELxMfUxPSI)+GA?1-2xMUxPSI*2
[11] D1l-(ALPHxX!'xC1 )+(B2xC2xALPfJxXI+IDEL)+A2xCP-(ALPHx

XIxC3xPSI)+DODZSTx2x(lOPIISTR)*2)
[12] D24-(ALP~xXIxC2xB1DEL)+CAlxP)+(((ALPHxXIxC4)-

2 )xDODZSTm)+(ALPJIxX~xC5 )-2. 5xDODZST *2
[13] E1.-CQ2xDELxXIxUxPSI(1-MIU)*2)x((1-MU)x(A2+B24

DEL) )..U)(2xDELxXIxB2)-D1
[14] E24-(Qx(( 1-PI!U)x(A1+B14!DEL) )-2)+DODZST-(GAI~fxXI)+(

2xDELxXIxB1) -D2
[15] F1-.(2xXI)-(R-CX~xMUxPSI*2 )+( 1-MU)*2 )x (2xA2-(X!Ux

A2 )+MU)+'1
[16] F24--DODZSTi-2xRx (Alxl-?fU) -1

[18] T-((S*2)+E2+!F1)*0 .5
£19] DVDZST14-S+T
[20] DVDZST24-S-T
[21] 'DVDZST1 ';DVDZS'1
[22] 'DVDZST2 I;DVDZST2
[23] 'DODZST I;DODZST
[24] VS-+DVDZSTlxO.0001
[253 THETAS+1+DODZSTxO.0001
[26] ZS-1+0.0001
£27] XS4--ZS
£28] TP*-GAM, BSTR, ZETA, H.PHISTR
£29] TN-MU,XI.DEL,SIG,.ALPH,UST, TSTRST

v
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VSOLWIPID2 [ flV

V SOLWIND2 ;X;Y;K;D;I;JFV;LR2R3;R4;R5R
6

L]I IV1.-XS, VS, THETAS
?I ZF+-VF-UF-TIIETAF+P-ODZF-HFBETAF-iO

4] Y-IV1[3],IV1[2]
5] I'-ZS
5] R14-ALPHxXIx(2OPIIISTR)*

2

7]. R24-XIxZETLA*2
8] R3-ZETA*2
9] R4-GAMxXI
10] CDP:K-(4,p,Y)pL4K[-1] DER M4-Y

11] -((L[1]=0)x(LE2>=0) )/CJP

13] CEP:-~(J<3+pppKJ;]-JL-(X[13+D) DER ?1-Y+K[

1+J-J+1;]xD+X[214 2 2 l[JI)/CEP
14] FV14(X[1]+/X[l2]),Y-Y+(X[2]+L6)x+/[1] KE

1 2 2 3 3 4 ;1

17]* IIA~-2
18] -CGP
19] CFP:ZF-ZF,(+LFV1r1])
20] IT-ZF[p,ZF]x1+ICC3]

22] THETAF4+-THIETAFFV1[2]
23] DODZF-DODZF, (-L[1IxFV1[1]*2)
24] -(CpDODZF)1l)/MHA
25] -( IDODZF[pDODZFP)>(IDODZFr(pDoDZF)-1]))/CJP
26] MA : -COP
27] CHP:'DODZ POS.'
128] MA- 1
129] -CGP
:301 CJI':'TEMP.<0 OR DOWZ INCREASINGI
.31] MA-0
.32] -CGP
.33] CGP:PHIF-( 3o((ZET.AxCSIG*2)-ZF*2).!.iVFxZF)fU LZF))

+01
-34]' WF4-C(VFx3oPHIF)+ZETAxZF)'LDEL
..35] BETAF-( (BSTRx( 1+PSI*2)xZF*2 )+VFx(1+C 3oPFHtF)*

2)) xTRETAF
v
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VDERW]IV
V Z--X DER !;Ml;H2;Y1;Y2;T;P;A;B;C

[1] -U(ME1]<0)/Pl
[2] P*--(ZETA ',[2JxX)x(A--XxXxSIG*2)xB+*l-MUxXxX41C

2]
[3) All-(Rlxl+PxP) VI1 l*2. 5
[4] M2-(0. 5x (ME2] -VIINF)x![ 23+tfINF)+(

2.5x1![l]*!XI)-(GA,,'xX)-C-0.5xR3xXxXxBxBx((SIG*
2)-PIU*I[2] )*2

[5] M24-M2+I!UxR3x (A xBal[2] ) -VIIIF
[6] Yl+(2xCxXI)+((2xMfUxR2*?1f[2] )x(AxAxB*3)-AxBxB)+(Xx

MlxtM2)+(2xt?!ll])rXxR4
[7) Y2-(XIxM[2JxM,[2] )-?1[JItR2x.UxAx(B*3)*LM[

2]

[9] -*0
[10] Dl:Z*- 0 0

V DBQ
[l] 'ENTER K'
[2] K-+U[
[3] NST4-(ALPHxKx(TST*2.5)x(2oPHISTR)*2)4-2xUSTxRSTxBC
[4] iF-NST*VFxZF*2
[5] BF+-((MUXO4xI4ASSxNSTxUST*2)*

0.5)+(ZF*2 )x(2oPIIIF)
[6] QF4--Xx( (THETAFxTST)*2. 5)xDODZFxTST*RST
[7] PRF*(((ZFxRSTxBF)*2)x(USTxVFx(lOPHIF)*2)-DELxUST

IxWFx(loPIIF)x(20P11F))*0L4

[8] KEF-CMASSxNFxVFxUSTx(ZFxRST)*2)x
0. 5x((CVFxUST'1)+WFxDELxUST)*2

[9] F.-IZxNSTxUSTx (PST*2 )xtASSxUST*2
[10] 'TOTAL EnERGY FLUX? ;F
[ill], NBQO~- 2 1 0(6,(pZF))pCZFxRST!

69600000000),tNF,BF, QF,PRFKEF
v
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VIMAIND] V
V IMAIN;FG

[1] 'ENTER STEP SIZE, MAX. Z AND PRINTOUT INTERVAL'

[2] IC-0
[3] PARAM1
[4] PARAM
[5] START
[6] SOLWIND2
[7] FG-(7,(pZF))p(ZFxRST+69600000000),(VFxUST),(WFx

DELxUST),(THETAFxTST),DODZF,(PHIFx360"o
2),BETAF

[8] MAT- 2 1 OFG
[9] MAT
[10 *(.A=2)/0

V

VPARAMI[l] V
V PARAM1

[1] GAH+TPE1 ]
[2] BSTR+TP[2]
[3] ZETA-TP[3]
[4] • H-TP[4]
[5] PHISTR-TP[5]

VPARAME ] V?
V PARAf;A ;B;OME;GHS7; XP;BP

[1] OME-2.92E 6
[2] GMSN-1.33E26
[3] XI-(('2)++BSTR)+(((((+2)+BSTR)*2)-(2x(2oPHISTR)*

2 ) BSTR) *0. 5
[4] UST+(GMSNxOME+GAMxZETA)* 3
[5] RST+((GMSNxZETA*2) GAMxOME*2)* 3
[6] PSI-30PHISTR
[7] DEL-PSI+ZETA
18] MU( i-XI)+(1-(XI+((2oPHISTR)*2)))
[9] SIG-(1+(PSIxi-MU)*ZETA)*0.5
[10] A+2+(XIxDEL*2)+(2xDELxXIxrlUxPSI+1-MU)-GAMxXI
[III B-XIx(O.5x1+DEL*2)+(MUxPSI*2)+(5"2xXI)-H+GAM+DEL

xMUxPSI
[12] ALPH-A+B
[13] MASS-(1836x9.1066E-28)+(0.05x

6 6442E-24)
[143 BC-1.38E -16
[15] TST-(MASSxUST*2)+(2xBCxXI)
[16) XPO0,(-2xH),(2x!UxZETA*2)
[17 VINF-(CUBIC XP)[13
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V.STARTW] V

V START;A1 ;A2 ;B1 ;B2 ;C1 ;C2 ;C3 ;C4 ;C5 ;D1 ;D2 ;P;E1 ;Q;F1

;F2 ;R ;S ;T

El] DODZST-2+(XIx DEL* 2 )+( 2x DEL xXIx?fUx PSI T'l-MU)-GAfx

2)
[3) A 2---1*(1-MU)
[4] B14-ZETA±AlxPSI.
[5] B2-PSIx1+A2
[6] C1l-l+?UxPSI*2
[7] C2-(DEL*2)-DELxt!UxPSI
[8] C3-(2xtMUxPSI)-DELxP4U
[9] CLI 522xXI
[10] C54-(2xDELxMlUxPSI)+GAI?!2x?1UxPSI*

2

[11] D1l-(ALPHxXIxC1)+(B2xC2xALPIxXI-tDEL )+A2x (P-(ALPHx

XIxC3xPSI)+DODZSTx2x(loPHISTR)*2)

[1231 D24-(ALPHxXIxC2xB1ltDEL)+(AlxP)+(( (ALPHxXIxC4)-

2 )xDODZS-T)+(ALPHxXIxC5)-2.5xDODZST*2
[13] E1-( CQ-E2xDELxXIxM~UxPSI+( 1-MU)*2 )x( ( 1-MU)x(A2+B2*L

DEL) )-MU)+(2xDELxX1IxB2)-D1
[141] E2-(Qxl( ( lfU)x(Al+?1-!DEL))>2)+DODZST+(GA!xXI)±(

2xDELxXlxB ) -D2
[153 Fl(x!-R Xx!xS*).z(1-IMU)*2)xC2xA2-(MfUx

A2 )+IMU)±1

[16] F2--DODZST+2xCAlxl1?1U)-l

[18] T-((S*2)+E2'tF1)*0. 5

[19] DVDZST14-S+T
[20] DVDZST24-S-T
[21] VS-1-DVDZST~x0.00Ol
[22] THETAS*-1-DODZSTx0.00Ol
[23] ZS-1-0.0001
[24] XS*ZS

V
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VSOLWIND2n] V
V SOLWIPID2;X;Y;K,;D;I;J;F'1;L;Rl ;R2 ;R3 ;R4 ;R5 ;R6

El] I Vl-XS, VS, THETAS
[2) ZF-VF-WF-THETAF+DODZF-PHIF-BETAF-l 0
£3] X-IVl13l,ICEl , (41Cr 21)
£4] Y-IV1[3],IV1£2]
£5] I*-ZS
£6] R1-ALPHxXIx(2OPHUSTR)*2
£7] R2-XIxZETA*2
£8] R3-ZETA*2
£9] R4-GAxXI
[10] CDP:K-(4,p,Y)pL-X£J-1 DER Mt-Y

£11] CEP:-(J<3+pppK£J;3-JL-(X[l]+D) DER 1-Y+KE
l+J/-J+1;]xD*X[2]+1 2 2 l[J])/CEP

£13] -( (LE110)x(L£2>=1))/CJP
£14 ] FV14-(X[1]3-+lX[1,2l),Y-Y+(X23]*6)x+/11 KE

1 2 2 3 3 4 ;1

£161 COP:-((XE2]xXE 3)-XE13 )>o)/CDP
£17] MA-2
[18] **CGP
[19] CFP:ZF-ZF,(mFV1£l])
£20] I-*-ZF~p,ZFI-IC£ 3lxZFp,ZFI
£21] VF-VFFV1E3]
£22] THETAF4-THETAF,FV1£23
£23] DODZF4-DODZF, (-L£ 1IxFV113*2)
£24] A1HA:--COP
£25] CHP:'DVDZ'<0;17LM.<0, DENOI4.>01
£26] -CGP
£27] CJP:'DVDZ<;P7U?1.>0, DENiOM.<0'
£28] CGP:PHIF-K3o( (ZETAx(SIG*2)-ZF*2)*L(VFxZF)-MU+LZF))

+01
£29] WF-((VFx3oPHIF)+ZETAxZF)I+DEL
£30] BETAF-((BSTRx(1+PSI*2)xZF*2)*-VFx(1+C3oPHIF)*

2)) xTIETAF
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V D ER[i [11 V
V Z-*X DER ?!;l;M2;Y;Y2;T;P;ARB;C;Q

[2] -([1]<0)/D1

[3] P*.-(ZETA*?1f[23xX)x (A*-1-XxXxSITG*2)xB-+*1-MUxXxXzM[

2]
[4] Af1-*-R Ix1+PxP) *U[1]*2 .5

[5] 112-( 0 .5x W1[2]-VIP) x?1[2 +VINF)+(
2.5xM[1]*LXI)-(GA?1xX)-C-0.5xP3x~xXxBxBx((SIG*
2) -MU *M[ 2])*2

[6] M2*.M2 +IfUxR3x(A x.B-[2]I )--*VINF

[7] Y1-*(2xCxXI)±(( 2xMUxR2*Mt [2])x(AxAxB*3)-AxBxB)+(Xx
MlxMf2)+C2xMf[1] )-XXR4

[8] Y2-CXIxM[2]xMl[2] )-tM[1]±R2xMUxAxAxCB*3)*LM[
2]

[9] Z-(AfxM2 ) .( -YlxtM[2],Xxv2)
[10] -( (Yl 0)x(Y250 )x(Q1l) )/D2

[11] D3 :-((Y1 *Y2 )>0)/0
[12] Z-(Y1<0) ,(Y2<0)
[13] -*0
[14] Dl:Z~- 0 0
[15] D2:'R1 ';(±LX)xRST-&69600000000
[16] U-0
[17] -D3

v

VDBQEW]V
V DBQ

[1l 'ENTER K'

[2] K4-O
[3] NST4-(ALPHxKx(TST*2.5)x(20PHISTR)*2)12xUSTxRSTxBC
[4] NF-NST+tVFxZF*2
[5] BF4-((IlUx4xMASSxNSTxUST*2)*

0.5)*!(ZF*2)x(20PHIF)
[6] QF *-KxC(THETAFxTST)*2.5)xDODZFxT ST*RPST

[7], PRF4-(((ZFxRSTxBF)*2)x(USTxVFx(1oPHIF)*2)-DELxUST
xWFx( 1oPHIF)x(20PFIP))!*04

[8] KEF-*CMASSxNFxVFxUST>x(ZFxRST)*2)x
0.*5x (( VFxUST) +WFxDELxUST) *2

[9] F*-HxNSTxUSTx(RST*2)xM!ASSxUST*2
[10] 'TOTAL ENERGY FLUX';F

[11] NBQI4- 2 1 0(6,(pZF))p(ZFxRSTi*
69600000000) .,NF, BF, QFPRF,XEF

V
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VASOLE-]V
V ASOL;P;S;A

[1] PARAM1
[2] PARAM
[3] P-(1.5xVINF*2)-H
[4] S (.5xVINF*2)+H
[5] C1O GAM+P
[6] A+(TSOL[3]-(XIxC10x(SxC1O)-GAI)xTSOL[1]*

2)+(TSOL[1]*- 4 3)+ ((TSOL[1]* 7+3)x(29xGAIr)-
35xSxC10) -9xP

[7.] C11-5xA+2xXIxP
[8] C12+0
[9] C13 -(5xC10x(SxC10)-CAM)+2xP
[10] C14-((15xGAMxXIxC11)-35xC10x(XIxSxC11)+A)+

9xXIxp
[11] C21-0
[12] C22 (XIxCx(SxC1(SxCO)-GAM)A
[13] C23-((14xC10x(XIxSxC1l)+A)-6xGAMxXIxC11)*

9xA
[143 VVEC+1,C1O,C1,C12,C13,C14,0,0,0
[15] TVEC-0,0,1,C21,C22,C23,0,0,0
[16] DTZVEC+0,0,0,0,0,4,(5xC21),(6xC22),(7xC23)
[17] 'ENTER MAX. Z AND PRINTOUT INTERVAL'

[181 1V-[
[19] ZFVFWFP+THETAF-DODZPFPHIF-BETAF-0
[20] ET-TSOL[I]*-'3
[21] COL:EPN-1,ET*2+18
[22] V++/VINFxVVECxEPN
[23] T-+/AxTVECxEPN
[24] DT-+/(-A'3)xDTZVECxEPN
[25] ZFZF,(ET* 3)
,[26] VF-VF,V
[27] DODZF+DODZF,DT
[28 THETAF+THETAF,T
[29] ET-(ZF[p,ZF]x1+IV[2])*-'3
[30] -(ZF[p,ZF]<IV[1])/COL
[31] PHIF( -30((ZETAx(SIG*2)-ZF*2) +(VFxZF)-MU'ZF))+ol
[321 WF((VFx3oPHIF)+ZETAxZF)+DEL
[33] BETAF-((BSTRx(1+PSI*2)xZF*2)'VFx(1+(30PHIF)*

2))xTHETAF
[34] MAT- 2 1 0(7,(pZF))p(ZFxRST-

69600000000),(VFxUST),(WFxDELxUST),(THETAFxTST),
DODZF,(PHIFx360+o2) ,BETAF

v
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VPARAM1[ Ell V
V PARAP11

[2] BSTRP,-TP[2]
[3] ZETA*-TP[3]
[4] 1l+TP[4]
[5] PHISTR-TP[5]

VPARAM[ EJI V
V PARAM; A ; B; OIE; GIS1;XP; BP

[1.] OME-2.92E-6
[2] GM!SN-1.33E26
[3) XD-((*L2)+*!BSTP)+(( ((+L2)+*LBSTR)*2)-(2x(2OPHISTR)*

2)+I3BSTR)*0 .5
[4] UST.-(G!SNxOMEGAMxZETA)* -3
[5] RST-(--((GMSNxZETA *2 ) -GAPxOPE*2)-L 3
[6] PSI-30PHISTR
[7] DEL-PSI+ZETA

[9]' SIG-(1+ (PSIx 1-MU) +Z"ETA )*0 *5
[10] A-2+CXIxDEL*2)+(2xDELxXIxMfUxPSI+11-MU)-GAMxXI
Ell]* B~-XIx(.5x~lDEL*2)+(1!'UxPSI*2)+(5+L2xXI)-ll+GAMf+DEL

xMUx PSI
[12] A L 2.-A -tB
[13] MASS4-(1836x9. 1066E 28)+(0.05x

6 .6442E 24)

[15] TST- (M.ASSxUST* 2)(2 xBCXI)
[16] XPh-,(-2x1),(2xMfUxZETA*2)
[17] VINF4-(CUBIC XP)[13

V

VDBQ[DI]V

V DBQ
[1] 'ENITER K'
[2] K-C
[3]* iST-~(ALP1xKxTST*2.5)x(2PISTR)*2)*2xUSTxRST-xBC
[4] NF*-NST*LVFxZF* 2
[5) BF--( (PMUxo4 x?fASSxl!STxUST*2)

o *5)m*(ZF*2 ) x( 2PHIF)
[6] QF ,--Kx((TI!ETAPxTST)*2.5)xDODZFxTST*RST
[7] PRF*-(( CZFxRS-TxBF)*2)x(USTxVFx(1OPRIF)*2)-DELxUST

xWFxC1oPHIF)x(2OPHIF) )+04

[8] KEF4-(?ASSxNFxVFxUSTx(ZFxRST)*2)x
0 .5 x ( ( VFxUSTr,) +I-FxDELxUST) *2

[9] F4-HxNSTxUSTx(RST*2)xI1ASSxUST*2
[10] 'TOTAL ENERGY FLUX';F
[Ill NBQA-- 2 1 0(6,(PZF))PCZ~xRST*.

69600000000) ,IF,BF,QF,PRF.KEF
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APPENDIX B

The divergence of the anisotropic proton pressure tensor

PF 4- Fi(f -p-L) (Bi)

may be obtained as follows. In index notation we may write (Bl) as

ZaYj -W$j U
where 6.. is the Kronecker's delta.

It follows that

but from Maxwell's equations

9%__ . (B4)

hence we obtain

which is the desired result.
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APPENDIX C

The numerical integration process is optimized by expressing the

system of governing equations in reciprocal space. 
Thus we introduce the

new independent variable X, where

(= Z (Cl)

and it follows that for any function Y z ) we have

<tC 42'P (C2)

The system of equations (111.2.25) then becomes

where the coefficients bi., (j=1,8) are given by the following expressions:

bA . b- , [Z(1)4 1 s ((Zsir, $)+e0)

\1v vl 4an $ (C4)

, b 1inz .(c6)

b s bl = b V/ (C7)
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o ae + 41, (si,,- s Iin (+2cos'9)- X 4

2 (C8)

1 cg)
6I S (6.-L s co - zVs 4anQS (C9)

I (Gb)e c~ aeo2S- '~

2 -- b24 ..- C c Oo6 l , (Cli)

b26 = 'c <01 sinrr j b2 = - b2 (C11)

b2 5 = - 7 - (C12)

3(e- L Y s n) os)hSd- (cl3)

b, 2cos a~ os [- B s;in /4y -44B, cea,d'
lK

V (14)

b3. S c in s 5,j6 (1-4 3 0 Ios Rc

bzz - 1- ~csea,oLd4%v crs

- b3 S 16 - bb -C3 (C17)

bes = _e sg z, aC18X (C16 )
(C18)
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64, (<C6 ,/ w)( +oo€ +(a s; :y/ ) b(o dg -
(c19)

b4 = Fsin 2 e (-e ceQ / v (c20)

b4 = j = (e6 c4eo /Z(VZ) - I (021)

b4s b= , 4 b,4 = (022)

(C23)

-t = c cos2 05I 4 0 ; /X2 (c24)
V

e 6 cos s n (el - 2 Q cos /)C (c25)

S= I b4 = ss (c26)
Xa

s " 567 =O (C27)

Fba= :;n 1 + C, s (i+COS )/Xaz (c28)

b61 - (e. +wos$;/w) (029)

b 62 C0 S.^ / A Q_4QLC )C2)a (C30)
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b64 b=1= (C31)

-- =0 (C32)

~2
b77 8 - e c.S (c35)

b78 = eo 2V + TS-7 - " (C s)3

aCS -a,) 4- col S8, ,- -$ 4an

x 4 (Q +QCo!s s/2x2j (C36)

and

49,5 w n'- w (c37)
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APPENDIX D

The computer programs developed to obtain 
solutions to the two-

fluid, two-region model are listed below. In the inner region the pro-

grams listed in Appendix A are used 
to compute the solutions up to the

transition point.

The outward two-fluid integration program is "MAIN" with subpro-

grams "PARAM', "PARAM1", "START", "SOLWIND2", "DER", "SOLWIND3" and "DERA".

The asymptotic solutions are obtained with the 
program "ASOLAN" and sub-

programs "PARAM1", "PARAM' and "COEFF".

The heat fluxes, density, magnetic field intensity 
and energy flows

are computed with the "NQTF" program. The program "RATIOS" calculates

the proton temperature anisotropy and 
proton-electron temperature ratio.

"DFP" computes the parameter values that determine 
the proton velocity

distribution function.

The constant contour curves of the distribution function may be

obtained with the program "FUN" and subprograms "F", "G", "ZERO" and

'"ZEROP".
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VMAIN[ ] V
V MAIN ;IC;FG;XM;KM;KL

[1] '.ENTER BETASTAR'
[2] BSTR-0
[33 KL-KM-O
[4] 'ENTER ZETA'
[5] ZETA-0
[6] 'ENTER PHISTR IN DEGREES'
[7] PHISTR +x(o2"360)
[8] 'ENTER GAMMA'
[9] GAIMI-
[10] 'ENTER RATIO OF GAMPAR TO GAMPER'
[11] G-0
[12] 'ENTER H'
[13] H+
[14] 'ENTER STEP SIZE, TRANSITION Z, PRINTOUT INTERV

AL AND MAX.Z'
[153 IC-0
[16] 'ENTER DGAM AND NO. OF EXECUTIONS'
[17] AL-0
[18] IJ-1
[193 XM-1
[20] I11:PARAM
[21] START
[22] M12:SOLWIND2
[23] FG-(7,(pZF))p(ZFxRST+69600000000).(VFxUST).(WFx

DELxUST),(THETAFxTST),DODZF,(PHIFx360+o
2),BETAF

[24] TSOLZFp,ZF]VF[p,VF],THETAF[p,THETAF],WF[pWF3
,PHIF[p,PHIF,DODZF[p ,DODZF

[25] MAT+ 2 1 OFG
[26] -(MA = 2 )/M20
[27] M21:-(MA=1)/M13
[28] KMI41
[29] -M14
[30] M13:KL-1
[313 M14:-((KL=1)x(KM=I))/H15
[32] -M16
[33] M15:ALE1]-AL[.1] 2
[34] M16:-(M A= 1)/M17
[35] GAM- GAM-AL[1]
[36] -M18
[37] M17:GAMt-GAM+AL[1]
[38] H18:IJ+IJ+1
[393 (IJ=AL2])/M19
[40] "M11
[
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[41] M19:'PROGRAM EXECUTED ';IJ;' TIMES;WISH TO

SAVE?'
[42] -M11
[43] M20:SOLWINiD3
[44] FGA+(11,pZF)p(ZFxRST 69600000000),(VFxUST),(WXx

DELxUSTxZF),(TPLxTST), (TPRxTST),QPL, QPR, (TExTST)

,DTEDZ,(PHIFx360"o2),BPETAF
[45] TSOLA ZF[pZF3,VFCPVFTPL[oTPL],TPR[pTPR],QPL[p

QPL],QPR[pQPR],TE[pTE],PHIF[pPHIF] ,PX[pWXI

[46]3 (MA=2)/0
[47] -*M21

V

VPARAMI[W] V
V PARAM;A;B;OME;GMS?;XP;BP

[1] OME2.92E 6
[2] GMSN+1.33E26
[3] XI-((+2)+-BSTR)+((((('2)+'BSTR)*2)-(2x(2oPHISTP)*

2)+BSTR)*0.5
[4] UST-(GMSNxOlHE'GAMxZETA)*'

3

[5] RST-((GMSPNxZETA*2)+GAM1xO ME*2)*+ 3

[6] PSI-3oPHISTR
[7] DELPSI+ZETA
[8] PMU+(i-XI)(1-(XIT((2OPHISTR)*2)))
[91 SIG+(1+(PSIxl-!U)+ZETA)*0 .5

[10] A 2+(XIxDEL* 2 ) + ( 2 x D E L x X I x H U x P S I 1 - H¢U ) - GA M x X I

[111 B+XIx(0.5xl+DEL*2)+(IMUxPSI*2)+(5"2xXI)-H+GAM+DEL
xMUxPSI

[12] ALPH-A+B

[13] MASS+(1836x
9 .1066E 28)+(0.05x

6.6442E 24)
[14] BC-1.38E 16
[15] TST4 (IASSxUST*2)'(2xBCxXI)
[16] XPO0,(-2xH),(2xMUxZETA*2)
[173 VINF+(CUBIC XP)[13

[18] 'GAM MA: ';GAM; ' RSTAR: ' ;(RST+
69600000000);' BETASTAR: ';BSTR

[191 ' PHISTAR: ';PHISTRx(360+o2);' XI: ';XI

[20] ' H: ';E;' USTAR: ';UST

[21] 'ZETA: ';ZETA;' PSI: ';PSI

[22] 'DELTA: ';DEL;' MU: ';MU

[23] 'SIGMA: ';SIG

[241 ' ALPHA: ';ALPH;' TSTAR: ';TST;' U

INF: ';(VINFxUST)
v
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VS TART[ Fl] V
V START;A1 ;A2 ;B1 ;B2 ;C1 ;C2 ;C3 ;C'4;C5 ;D1 ;D2 ;P;E1 ;Q;F1

;F2 ;R ;S;T
El] DODZST-2+(XIxDEL*2)+(2xDELxXIx?1UxPSI+11-?U)-GAMx

xi
[2] A1l+( ( 3xMU) -1+( 1+?IU)xSIG*2)+L(1-PfU)x(1.I +SIG*

2)
[3] A24--*L(1-?!U)
[41 B1-ZETA+AlxPSI
[5] B2-PSIxl+A2
[6] C 1 -1- 4UxPSr* 2
[7] C2-CDEL*2)-DELxM4Ux.PSI
[8] C3-(2xMUxPSI)-DELx?IU
[9] C4-5+L2xXIT
[10] C5-(2xDELxM!UxPSI)+GA?f-2xM UxPSI*2
[11] D1+(ALPHxXIxC1 )+(B2xC2xALPJIxXI+IDEL)+A2x(P*-(ALPHx

XIxC3xPSI)+DODZSTx2x( 1oPFIISTRP)*2)
[12] D2-(ALPHxXIxC2xB1*!DEL)+(AlxP)+( ((ALPIIxXIxC4)-

2)XDODZST)+(ALPH xXI'xC5)-2.5xDODZST*2
[13]. E*+( (Q-2xDELxXIxMUxPSI.!( I1-MU)*2 )x( 1-P!U)x (A 2+B2*

DEL) )-IUU)+(2xDELxXIxB2)-D1
[1's] E2-(Qx( ( -MU)x(A1+Bl1+DEL) )-2 )±DODZST+(GAPxXI)+(

2 xDELxXIxB1) -D2
[15] F1*-(2xX1) -(R'-(XIxMUxPSI*2 ) .(1-t1U)*2 )x (2xA2-CMfUx

A2 )+iIfU)i-
[16] F24--DODZST+2xRx(Alx 1-IlU) -1
[17] S-CEl-F2)2-2xF1
[18] T-( S*2) ,+E2+!F ) *0,5
(19] DVDZSTI11-S+T
[20] DVDZST2-S-T
[21] 'DVDZST1 I;DVDZSTI
[22] 'DVDZS'2 I;DVDZST2
[23] 'DODZST ';DODZST
[24] VS+1+DVDZST1xO .0001
[25] THETAS-1+DODZSTx0,0001
[26] ZS-1+0.0001
[27] XS-fZS
E2 8]. TP-GAPI.BSTR,Z ETA, HPHIIS TR
[29] TN-MU,XIDEL,,SIG,ALPHI.USTTST,RST

v
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VSOLWIND2[El IV
V SOLWID2;X;Y;;D;I;J;FV1;L;R;R2R3R4R5 ;R6

[1] IVi-XS, VS, THETAS
[2] ZFV-FTETFDDFPHFBTFtO

[5] I-ZS
[6] R1I-ALPIxIx(2OPHISTR)*2
[7] R24-XIxZETA*2
[8] R3-11ZETA*2
[9] R4h'-GA~xXI
[10] CDP:K-(4,p,Y)pL-X[J-1] DER M*-Y

[13] CEP:--(J<3+pppK[J;Y4-JL-(X[1h1±D) DER I1+Y+K[
1+J-+1;]xD-X[2]+t 2 2 i[J])/CEP

[14] FV14-(X134±lX[2),Y+-Y+(X[2]It6)x+1[1] KC

1 2 2 3 3 4 ;]

[17] MA -2

[18] -CGP

[20] I4-ZF[p ZFJX1±IC[3]

[22] THETAF-THETAF',FV1[2]
[23] DODZF-DODZF, (-L[hI~xFV1[1]*2)

[25] -((IDODZF[PDODZF])>( IDODZF[(pDODZF)-1]))/CJP
[26] MHA:-COP
[27] CHP:'DODZ POS.'
[28] MA-1
[29] -CGP
[30] CJP:1'T'EMP.<0 OR DODZ INCREASING'
[31] MA-0
[32] -CGP
[333 CGP:PHIF-(-3OC(ZETAx(SIG*2)-ZF*2)!-(VFxZF)?1fU4ZF))

+01
[34] WF-~((VFx3oPFIF)+ZETAxZF).LDEL
[35] BETAF-((BSTRx(1+PSI*2)xZF*2)*tVFx(l+(3oPHIF)*

2)) xTflETAF
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VDERE[3V
V Z-*FX DER i;l;12;Y2TPAB;C

C 2 1 P-- (ZETA -I C1[2xX) x (A+- iXxXxSIG*2 )xB4-+L1 -IUxXxX*!tf[

2]

4 1 2-(05x(M,[2]-VINIF)xMf[2]+ViJTF)+(

2 .5xM[l]2-XI)-(GA!! jxX)-C*-.5xR3x~xyx~xBx((Src*
2)-MU*LM[2J)*2

[5] I,2-M2 +MUxR 3 x(A xB-LM E2] )-V1JF

[6] Y1+(2xCxXI)+( (2xM!UxR2?'tl2] )x(AxAxB*3)-Ax~h(B)+(Xx
MlxM2)+(2xl![1])-XxP

[7] Y2-(XIxlM[f2]xM[ C2]1 ) -I [13 +R 2xMUxA xA x(B 3~

2]

[8] Z-(MlxM2) ,(-YlxPI[2]aXxY2)
[ 9] -*O
[10] D1:Z~- 0 0

V
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VSOLWIND 3[lDIV
V SOIWIND3; X;Y; ;All; ;J; L;JL ;FV;D

Il] GPER-(TSOL[2]xTSOL[ 1]*2)x(XrT*o.5)xTSOL[3]x2x
0.0391471320 5x ( 2TSOL[ s]) xTSQL[6] -ALPlx C( 2oPl.R )*
2 )x1+G-2

[2] GPAR-GxGPER
[3] 'GPAI? ';GPAP;' GPER ';GPE?

[4] QPL1-~GPA~xTSOL[3]x( (TSOL[3]+tXI)*0. 5)-2xTSOL[2]xTSOL[1]*
2

[5] QPR14-QPLlx2xGPER'!-GPAR

[8] 33 SOL[21,CTSOL[43]*TSOL[l]), (2pTSOL[3]),QPL1,Q2PR1,TSOL[

[10] ALPHEE-ALPt'xl.0407'4206
[11] AN-(ALPHEx(2OPIISTP)*2),(0.5xXIxDEL*2),(HxXI),(GA1xXI),(

ZETAxXIxM'U),(XIxMUt).(XrxPEL*2),(2xDEL)
[12] CDP:K4-(4.p,Y)p.-l-+X[J-,1] DERA M1-Y

[13] -(U±/L)=0)/CJP

[15] CEP:-3(J3+pppY[J;]_jr_(X[11DlEAlYlK[+4J1]DX
2]*t 2 2 1[JI)/CEP

[16] FV-(X[1]-+±X[t2]),Y-Yt(X[2]+6)x+/[1j YC1 2 2 3 3

[18] COP:-((X[23xX[3>-X[11 )>0)/CDP
[19] MA'-2
[20] -CGP
[21] CFP:ZF--ZF.( +EV[11)
[22] VF-VF.FV[2]
[23] I-ZFCPZF]x1±IC[3]
[24] WX-WX,FV[31
[25] 2'PL-TPL,FV[4]
[26] TPR+-TPR.FVI[5]
[27] QPL-QcPL,FV[6]
[28] QPR4-QPR,FV[7]
[29] TE4-TE.FV[8]
[30] DTEDZ4-DTEDZ,(-L[7lxFV[1]*2)

[32] -((IDEDZ[pDTEDZ)>(IDTEDZ[I+pDTPEDZ]))/CJP
[33] MJ1A:-COP
[34] CEIP: IDTEDZ POS.'
[35] fA-1
[36] -CGP
[37] CJP:'TLEMP<0 OR DTEDZ !TNCR.'

[38] MA-0
[39] -*CGP
[40] CGP:PHIF-( 30(ZF+VF)x(DELxWX)-ZETA)+o1
[41] BE2'AF-0.5x((BSTRx(11+PSI*2)xZF*2)+IVFx(1+(3OPHIF)*2))xTE+((

2xTPR,)+TPL)L3)
V



178

VDERA[DI V
V Z-X DERA ii;1!1;1-!2;A;B;C;D;E;F;P.IX;SL;1lXl;?.fY2;IfX3; ,fX4;MX5;14X6

;MX7
Ell -(11[71<0)/Dll
[21 C2FI-1-2xSFI2-1-CF 72-*-41+TFI2-TFIxTFI-(-*Clf[13xX)x(DELxtf[

21)-ZETA
[31 S2FI.<-2x(SFI-SFI2*0.5)x(CFI--CFI2*0.5)
[41 Ml-*--(AN[l]xl+TF12)-.L,'![73*2.5
[51 P12-+-(0.5xA-Xlxl-.I[13*2)+(Al ,7[2]x(lf[21*2)-i-B-X*2)+(

0.25x(5xtl[73)+(4xll[43)+14[31)+0.5xCFI2xtf[33-1 
[41

[61 P!2-1.,42+(((C-DELxS2F! tlf[llxX)xt-*[2]xtf[31-14[41)*74)+((14C

51+1 ,![61)xICFI- -2xB)-AII[33+(AII[43xX)+A 7[5]xTL-!xX

[73 All-A-((D-APIE6]xP.!El]xB)xTFI2)+0.5x(?![43xSF!2xl+2xCFI2)+(?!E
3]xCFI2xl-2xSFI2Y+1-1[71

[81 A12--(DEL-tX)x(O.5x(t![3J-1-f[41)xS2FIxCFI2)-DxTFI
193 A13-Pf[ll xCF12-t2

[101 A14-M[llxSF12 2

III A17--(I!Cll!-X)x(Xx?!lxII2-1-2)+ ![73+?1[41+(

0.5xSF12x(1+2xCFI2)xt![33-t,![41)+(AN[7]x(H[21-L.Y)*2)-A 
IE

41XX
[121 MXI-AllAl2,Al3,Al4.OO
[133 A21-(0.5xS2FIxCFI2x,',,IC3]-?.f[43)-DxTFI
[141 A22--(DEL LX)xA+(0.5xC2FIxCF.T2xlf[33-11[41)-D

[151 A24--lxA23--M[lJxS2F.TL4
C163 A27--((,kl[llxS2FIxCFI2xl,1[31-1.!E4]) 2xX)+AN[8]xAxtf[23.!B

[1731 '.'Y2-,-12l A 22,A23,A2'tCO

[181 A31-(2xCFI-LI,1[11)x(t![3]xCFIxl-3xM[43xSFI2.!4xA)-CFI2xE-
4xM[51-!B

[191 A32-(C-*r2)x(t.1[33xl+6x?,11[4]xCF!2.1-4xA)-2xExCFI
[203 A33-1-6xtf[3]xCFI2.1.4xA
[211 A37--((2x!#[33-i-X)x((3x?![4]xCF12xl+CFI2) 4xA)-SFI2)+

2xExCFIxSFI2-LX
[221 HX3-A31,A32,A33,0,Q,0
[231 A41-((1.1[63xCFIxl+CFI2).ttil[13xB)+(If[43xSFI2x(lf[4]xCFI2..t

2xA)-l)-tPf[l],
[241 A42-(C-.2)x(1.1[6]XCFI*-.B)+IIC4]xl-11[4]xCFI2.!.2xA
[251 A44-(MC3].xCFI2-t2xA)-I
[261 A47--((11[6lxCFIxCFI2-3) XxB)+(If[4]x(l+CF1-2)xl-m.[4]xCFI2--

2xA)-LX
[271 MX4-A41,A42,0,A44,0,0
[281 A51-(2xCFI41-IC13)x(?.f[33xCFI)+I,![5]xSFI2+B
[291 A52-(C-L2)x1fC3J-CFIxE-L2
[301 A53-1
[311 A55-2xCFI-!-B
[321 A57-(2T x(M[3lxSFI2)+(If[r ]xCF!xl+CFI2)!.B

[331 MX5-*-A51,A52,A53,OA55,0
[341 A61-(SFI2.tll[ll)XF-M[43+lf[63xCFII-B
[35' A62--CXFiL2
[36J A64-4-1
(371 A66-4-CFI-LB
[381 A67-(l + CF!2)xF-LX
[391 MX6-A61 A62,0,A64.0,A66
[401 MX7-Al7,A27,A37,A47.A57,A67
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[4 1] SL-AX-( 6.6)'plMX1 ,"X2AIX 3, IfX4 X5,tIX6

[4 2] Z-*-(SL+ .XMX7 ) :1xl!2 )
E[43 1 -0
[44] Dll:Z-*-7pO

V

VNQTF[EV
V NQTF K;Z1;Vl;PHI1;Z ;V;PII;NST;NF;BF;Q;QEF;A;QL;QR;PRF;W;

KEF
[1] Z 1-MAT[;1] x6 960000 0000 *RST
[2] BNQ-i0.
[3] V1-tA T[2] 1-UST

[5] Z +Z1,ZF
[6] V-V1,VF
[7] W-AT ; 31 FGAE[3 ;
(8] PHI4-PIII1 ,PHIF
[9]* NST+((ALPIHxKx(TST*2.5)x(2OPJIISTLR)*2)+t2xUSTxRSTxBC
[10] NF NST Vx Z *2

[11] BF-~(Mt~Uxo4xI.ASSxNSTxUST*2)*0.5)ft(Z*2)xt2oPulI
[12] Q1+-Kx(?!AT[;4]*2.5)xM!Am[;5]xT-ST+R.ST
[13] QE- -Kx (( TxSTT), '2.5 ) xT x TS T -tP ST x 1. f-)

[14] F-IxNiSTxUSTx(RSTm*2)xMAZSSxUST*2
[15] 'TOTAL ENERGY FLUX ';F;' FIR *2 ;l

2l4x6960000000 0 )*2
[16] QL-QPLxA+NISTxBCxTSTxUST
[17] QR4-QPRxA
[18] PRF-(((ZxRSTxBF)*2)x(USTxVx(1oPHI)*2)-x1OPIII)x(

2OP11I))-tO4
[19] KEF-(MASSxNlFxVxUSTmx(ZxRST)*2)xO.5x((VxUST)+[.?)*

2

[20] BNQ~- 2 1 0(8,PZ)P(ZXRST+!69600000000),NIF,BF,Ql,QEP. CL, (P--(

pQ1 )PO ),QR,PIRF,KEF

VRATIOSE0nV
V RATIOS

[I] PL-EU- 2 1 0C4,pTPL)pFGA[1;3.(TPL+TPR),C(TPL+2xTPR)xTST7
3), (CTPL+2xTPR)*t3xTE)

V

VL2FP[C] V
V DFP;GPL;GPR

[1] GPL4-(2xQPLx(VFxZF*2)x(XI+!TPL)*0 5)*LTPL

[2] GPR-(~QP~x(VFxZF*2)x(XI+tTPL)*0.)TP
[3] 0)- 2 1 .0(5,pGPL)pFGA[1;],GPL,GPR,CTPL+TPR),(TmPLxTST)

V
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VASOLAN[E] V
V ASOLAN;P;S

[l] PARAM1
[21 PARAM
[3] P-(1.5xVINF*2)-H

[5] EO4-TSOLA[1*--3
[6] TSOLA[9>-TSOLA[93xTSOLA[ 1]

[7] A-OA-TSOLA[7 3 4 5 6 9]*EO* 4 6 3 15 12 3
[8] BOL:COEFF
[9] EOV*-EO*O,i8

11]1 TEt --1, 0, C22,C2 3, C24 *C25 ,C26 ,C27 , 0
[12] TPLV-1 p0,0, 0,0,0,C36,0,0
[13] TPRV+1, 0,0,C43, C44,0, C46,C47,C48
[14] QPLV-1,O, 0,C53,C54,0,C56 ,C57,C58
[15] QPRV*-1,0:0,C63,C64,0,C66 ,C67 ,C68
[16] DTV--L4,0, (6xC22),(7xC23),(8xC24), (9xC25),(10xC26).(

llxC27) 0o
[17] WV4,-1,0, 0, C73,C74,0,C76,C77,C78
[18] A2-TSOLA[ 7] +(EO*4 )x+/TEVxEOV
[19] A3-TSOLA[3]+t(EO*6)x*/TPLVxEOV
[20] A4-TSOLA[4] .(EO*3 )x+/TPRVxEOV
[21] A5-'-TSOLA[ 5] +(EO*15 )x+/(2PLT/xEOV
[22] A6+T-SOLA[6] (EO*12 )x-,-QPRI~xEOV
[23] A7-TSOLA[9 ] (E7*3)x+/U.VxEOV
[24] -*((A2-A[2] ) 0.O0lxA2 )/RUR
[25] A4-0,A2 ,A3,A4,A5 ,A6,A7
[26] +BOL
[27] BUR: 'EN TER? IMX. Z AND PRINITOUT INTERVAL'
[28] IV-E
[291 'A VECTOR ;
[30] ZFV-FBTA-P-P-PLQRT0TEZPIFt
J[31] ET-TSOLA[1]*-1*3
[32] COL:EPII-ET*0,i8
[33] V-VINFx1+EPN[411x±/VVxEPN
[34] T-A2xEPII[5]x+/TEVxEPN
[35] TPAR-A3xEP[7x,-TPLVxEPJ
[36] TPER-A4xEPPN[4]x+/TPR'xEPN7
[37] QPAR-A5x(EPN[ 2]*15 )x+/OPLVxEPII
[38] QPER4-A6x(EPII[ 2]*12 )x+/QPRVxEP'J
[39] DT--(A2+t3)xEP7[ 8]x+I-DI./xEPN
[40] W-A7xEPN[4]x+I-WVxEPN
[41] ZF-&ZF,(ET* 3)
[42] VF-VFV
[43] DTEDZ*-DTEDZ,DT
[44] TE-TE,T
[45] TPL-TPL,TPAR
[46] TPR-TPR,TPEP



181

[47"] QPL-QPiL,QPAP
[481 QPR-QPRQER
[49] WF-WF,U'
[50] ET-(ZF[P,ZElxl+ITV[2])*-+3
[51] -(ZF[p ,ZF] 5IVE1J )ICOL
[52] PHIF-( 3o((ZE TAx(SIG*2 )-ZF*2)+!(VFxZ F)-IIU+LZF))±01

[53] BETLAF-O.x((BSTmx(l±PSI*2)xZF*2)+VFx(lt(3oPHIF)*2) )xTE+(((
2xTPR)+TPL) +3)

[54] 0- 2 1 OFGA-(11~pZF)p(ZFxFST+L6960000O000),(VFxUST),(WFxDEL
xUST),(T PLxTmST),(TP~xTSTm),QPL,QPP,(TExTST),DTEDZ,(PlIFx
360mo2) ,BETAF

VPARAI-1[Dl]V
V PARAM1l

[2] BSTR4-TP[2]
[3] ZETA-TP[3]
[4]- I-TP[ 4]
[5] PHISLR-TP[5]

VPARAI![ l]V
V PARAM; A;B ;OM-E;GI!S?;XP;BP

[1] OME-2.9?E 6
[2] GMSNh-1.33E26
[3] XI-(( +2)+zBSZ'R)+C((( C2)1+BSTR)*2)-(2x(2oPFIISTR)*2)+LBSTR)*

0.5
[4] UST-CG?,SNxOIIE+GAfxZFTA )*-13
.[5] RST-( ( GfSxZETA*2 )+GA?-xOlfE*2 )*+L3
[6] PSI-30PHISTR
[7] DEL4-PSI-Z ETA

[9] SIG-(1±(PSlxl-I!U)+!ZETA)*0.5
[10] A-2+(XIxDEL*2 )+(2xDELxXIx?1UxPSI+-UPU)-GA?1fxXI
[11] B-XIx(0.5x11+DEL*2)±(M!UxPSI*2)+(5+-2xXI)-H+GAM+DELx?1UxPSI
[12] ALPFI+A+B
[13] ?ASS-(1836x9 .1066E 28)+(0.05x6.6442E 24)

[14] BC-41.38E 16
[15] TST-(MASSxUST*2)4(2xBCxXI)
[16] XP+0,(-2xH),(2xllUxZETmA*2)
[17] VIrNF-(CUB.TC XP)[13

v
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VCOEFFEDIV
V COEFF;M

Ell Clo-((GAMxXI)-AE43)L1f-XIxP
[21 Cll*--5xAE 21 L4xPf

[31 C22-(2xClOxA[41+(XIXSxClO)-GA14xXI)-!A[21
[41 C13-((4xA[4]xClO)-A[33+5xA[2lxC22)-!4xtf
[51 C23-((Cllx(6xA[41)+(14xXIxClOxq)-6xGAMxXI)-A[2]xClO)x

l1m42xA[2l
[61 C14-(-(5xA[2]xC23)-4xA[43xCll)-t4xPf
[71 C24-*-Cllxl+4xX!xCllxS+3xA[23
181 C15--5xA[2]xC24-L4xM
191 C36-((4xAC 51 LAC 3 1 )-VINI'-!-Z ETA) xVINFLZ ETA

[101 C43*--ClO
[111 C44--Cll n

[121 C46-(-(ClO*2)+(((1.5xA[61-LA[41)+VIPIF-'2xZEr-,A)xVi-17F&ZETA)-Cl3
[131 C47-(2xClOxCll)-C14
[141 C48-(Cll*2)-CI5
1151 C25-((2xA[41XC46)+((2xVIIIF.&ZELIA)x(A[43xV-TNF-'ZZETA)-

3xA[61)+2xClOx(6xXIxSxCl3)+(3xA[2]xC22)+A[31-2xAC
4l+ClO)m5xA[21

[162 C16-(((2xYINF.IZETA)xA[61-A[4]xVII,,F*-.ZEI,"A)-(4xA[L 
]XC46)+

5xA[2lxC25)S4x14
[171 C26-(-7xA[41XC47)+(2OxClOx(A[4]X(VIt7F*2)-t(ZETA*2))+(XIxSx

C14)+A[23XC2342)
[181 C26-C26+(Cllx(3xA[31)+(2OxXIxSxCl3)+(-5xA[4]xClO)+

8xA[21 xC22 )+ ( "-x A[ 4 jxC13) -CIL 4x (6 xGAtix,,I) +A [4 '1

[191 C26-C26L9xAE23
[201 C17-((-SxA[2]xC26-t4)+(VIPIF*2)xA[4]xClOLZETA*2)2.P!
[211 C27-( 16xA[4]xC48)+(-2xCllx(22xA[4]X(VINF*2) L(ZETA*

2))+(22xXIxSxCl4)+(-6xA[41XC11)+gxA[21XC23)
[221 C27-C27+(4xCl5xA[43+3xGAIfxXI)-(Clox(44xXIxSxCI5)+

l650xA[2lxC24L6l)+4xA[23xCl4
[231 C27-C27-1-2lxA[21

'[241 C18-((-5xA[2]xC27.L4)+(ClIxA[4]x(VIP7F*2)4(ZETA*2))-A[
41 XC48 ) 11f

[251 C53--ClO+3xA[3]xA[43-L4xXIxZETAxVIIIFxA[53
[261 C54--Cll
[271 C56-(3x(A[31*2) 4xX!xZETAxVIi 7FxA[53)+(3x(VI?-IF*2)a

2xZETA*2)-CI3+CloxCIO+2xC53
[281 C57--C14+2xCllxC53
[291 C58-(Cll*2)-CI5
[301 C63--(2xClO)+(A[42*2).L2xXIxZETAxVINFxA[63
[311 C64--2xCll
[321 C66-*-(-2xClOx(2xC63)+ClO)+(-2xCI3)+A[3]xA[41-L4xXIXZETAxVITIF

xA[61
[331 C67-(6xClOxCll47)+(-2xCI4)-lBxCllxC63 L7

[347 C68-(-3xCllxC64L2)-2xCI5
(35' 'j C73-((ClOxIlUxZETAtVIPIF)-A[4lz2xXIxZETA)-LDEL-A[73
[361 C74-CllxtfUxZETA-1-DELxVINFxA[71
[371 C76-(Cl3xili*UxZETAI-DELxV!'NFxA[73)+(ffU-*VIP7F)+(A[33.12xDELxZE.mA

xXIxA[71)-CloxC73
[381 C77-(Cl4xt.fUxZETA-1-DELxVINF)+(A[4].Ll4xDELxZETAxXIxAc

7l)-(6xCllxC732.7)+8xC74xClO47
[393 C78*-(Cl5xlfUxZETA-.DELxVINFxA[71)-CllxC74

v
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VNQTFn] v
V ?IQTF K;Zi ;V1 ;PHI1;Z;V;PPII;NST;NF;BF;Q1 ;QE;F;A;QL;QP;PRF;W;

KEF
[1] Zi4-10
[2] BNQ-i0
[3] Vl1o~
[4] PHI1 iO
[5] Z-Z1,ZF
[6] V*V1,VF

[8] PHI4-PHI1,PZJIF
[9] NST-(ALPIxKx(TST*2.5)x(20PHISTmR)*2)+12xUS',xRSTxBC
[10] NF-qJST VXZ * 2
[11] BF-((AIUX0xL1xASSxSTxUST*2)*0.5)+!(Z*2)x l2oPllI
[12] Q1l-i0
[13] QE--KxC(TExTST)*2.5)xDTEDZxTSTIRSTx.04
[14] F-Hxi!.STxUSTx(PST*2)xIIASSxUST*2
[15] 'TOTAL ENERGY FLUX ;
[16] QL-QPLxA-NSTxBCxTSTxUST
[173 QR-QPRxA
[18] PRF-(( (ZxPSTxBF)*2)x(USTxVxIOPJII)*2)-WxloPHT)x(

2oPHI) ) *o4
[19] KEF-CM.ASSxNF'xVxUSTx(ZxFST)*2)xO.5xC((VxUST)+W)*2
[20] 1 Q~ 2 " 0(Q3,pZ)o(ZxpST.1r96000Oc0O)LF0'Q1,EPQP

(PQ1)P0),.QR,.PPF,KEF
V

VRATIOS[I] v
V RATIOS

[1] PL[Th- 2 1 0(4,pTPL)pFGA[1;).(TPL*TPR),((TPL+2xTPR)xTST+.
3), C(TPL+2xTPR) *3x2E)

V

VDFPE]~V
IV DFPT;GPL;GPR

Ell GPL-(2xQPLx(VFXZF*2)xCXI+ TPL)*0. 5).t.TPL
[2] GPRi-(QPRx(VFxZF*2 )x(XI*iTPL)*0 5)'.TPR
C3] [P- 2 1 0(5,pGPL)pFGA[1;].GPL,GPR,(TPL*-TPR),CTPLxTST")

7
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VFUN[ ] V
V FUN;H;I; J;PHI ;; XIO;K

[1] 'ENTER GPAR, GPER, TPAR, TPER'

[2] IN+0
[3] M+IN[3]+IN[4]
[4] XIO-0.001 ZERO 1 0.001

[5] H(*-XIO*2)xl+(IN[llxXIOx((2xXIO*2)+3)-1)-2xI.T[2]xXIO
[63 K+HxO.1x19
[7] PHI-(-o12)+olx(+18)x118
[8] LP ((pK),pPHI)pO
[9] IJ+-1
[103 C01:LP[I;J]-0.001 ZEROP 4 0
[11] J4-J+1

[12] -(JpPHI)/CO1
[13] I+I+J-l

[14] -(I-pK)/CO1
[15] LP+ 2 1 ((1+p),pPHI)p(PHIx360 o2),,LP

[161 'SCALE FACTOR'
[17] CES(2x1.38E-16xIN[33+fASS)*0.5
[183 DSx(M)*0.5
[191 LP

V

VF[UIV
V Z-F X

11] Z( ((4 3)xGAM[1] )xX*4)+(Xx2-GAM[11)+GAM[1]+(2xGA1[
2])-(X*2)x(2xGAM[1])+4xGAM[2]

V

VG E] V
V Z-G X;A;B

[1 ZK[I-(*-(A*2)+B)xl+(I7[1]xAx( 1+2x(A*2) 3))+2xINE
2 1 x (A+XIO +Xx IoPHI[J)x( 1x I+B-Mx (Xx2OPHI[ J3 )2 )

VZERO[ ] V
.V Z+TOL ZERO B;T

[1] -0xtTOL>IT-F Z-0.5x+/B
[2] -I.B[21(0<T)0<F B] Z

V

VZEROP[O V
V Z+TOL ZEROP B;T

[121 OxiTOL-T+-G Z0.5x+/B
[23 -1,B[C2 (0 <T),O<G Bl]Z

V
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